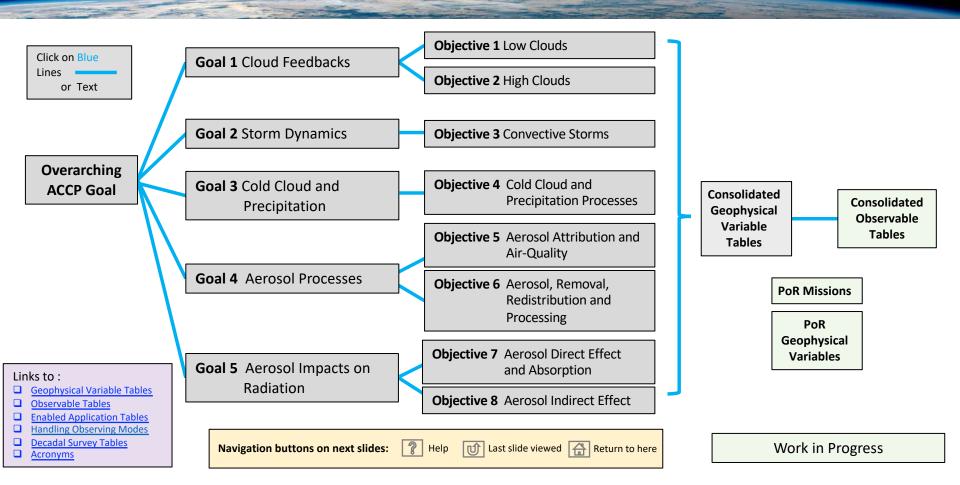
Science and Applications Traceability Matrix

Public Release Candidate G

Last Release by the ACCP Study Team
May 2021

Note

In order to follow the hyperlinks, make sure to view these slides in presentation mode.


ACCP Aerosols, Clouds, Convection and Precipitation Study

ACCP Aerosols, Clouds, Convection and Precipitation Study

- ❖ ACCP will deliver integrated space-based, airborne, and ground-based observations fundamental to characterizing coupled aerosol-cloud-precipitation interactions that profoundly impact weather, air quality and climate and play a critical role in feedbacks to the global water and energy cycles.
- Central to this observing system are observations of the vertical structure of these constituents, along with the first-ever measurements of convective vertical mass transport and unprecedented aerosol microphysical and optical properties, using active profiling sensors unique to ACCP in the future global observing system.
- ❖ ACCP will integrate its own measurements with others using advanced modeling and algorithms to generate synergistic data for scientific research and in near real time for applications of societal and economic benefit.

ACCP SATM Navigation Map

Overarching ACCP Goal	A+CCP	А	CCP	2017 DS Most Important Very Important	Goals
				W-1a W-2a C-2g	G1 Cloud Feedbacks Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds.
Understand the processing of				W-1a <u>W-2a</u> W-4a C-2g H-1b C-5c	G2 Storm Dynamics Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within convective storms.
water and aerosol through the atmosphere and develop the societal applications enabled from this understanding.				H-1b W-1a S-4a W-3a	G3 Cold Cloud and Precipitation Improve understanding of cold (supercooled liquid, ice, and mixed phase) cloud processes and associated precipitation and their coupling to mid-to-high latitude water and energy cycles.
				W-1a W-5a C-5a	G4 Aerosol Processes Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.
		888 -		C-2a C-2h C-5c	G5 <u>Aerosol Impacts on Radiation</u> Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.

Goal only fully realizable via combined mission.

A or CCP makes meaningful contribution to goal

Mapping from Top DS Questions to ACCP Goals

Key MI DS Questions

Processes. Why do convective storms, heavy precipitation, and clouds occur exactly when and where they do? [03]

W-5 (MI): Air Pollution Processes and **Distribution.** What processes determine the spatio-temporal structure of important air pollutants and their concomitant adverse impact on human health, agriculture, and ecosystems?

C-2 (I-MI): Climate Feedback and Sensitivity. How can we reduce the uncertainty in the amount of future warming of Earth, improve our ability to predict local and regional climate response to natural and anthropogenic forcings, and reduce the uncertainty in global climate sensitivity? [O1, O2, 03,04, 07, 081 R

Related MI DS Objectives

W-4a (MI). Measure the vertical motion within deep convection to within 1 m/s and heavy precipitation rates to within 1 mm/hour to improve model representation of extreme precipitation and to determine convective transport and redistribution of mass, moisture, momentum, and chemical species.

W-5a (MI). Improve the understanding of the processes that determine air pollution distributions and aid estimation of global air pollution impacts on human health and ecosystems by reducing uncertainty to <10% of vertically-resolved tropospheric fields (including surface concentrations) of speciated particulate matter (PM), ozone (O3), and nitrogen dioxide (NO2).

C-2a (MI). Reduce uncertainty in low and high cloud feedback by a factor of 2.

C-2h (MI). Reduce the IPCC AR5 total aerosol radiative forcing uncertainty by a factor of 2.

Linked ACCP Goals

G2 Storm Dynamics

Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within convective storms

G4 Aerosol Processes

Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.

G1 Cloud Feedbacks

Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds

G2 Storm Dynamics (see above)

G3 Cold Cloud and Precipitation

Improve understanding of cold (supercooled liquid, ice, and mixed phase) cloud processes and associated precipitation and their coupling to mid-to-high latitude water and energy cvcles

G5 Aerosol Impacts on Radiation

Reduce the uncertainty in Direct (D) and Indirect (I) aerosolrelated radiative forcing of the climate system.

cloud physical and radiative properties to large-scale and environmental factors including thermodynamic and dyr properties. 1) To what extent can the cloud physical and radiative properties to large-scale and environmental factors including thermodynamic and dyr properties. Enhanced: Adds to Minimum cloud microphysical prope		Objectives	Example Science Questions	Goal	ССР	A
Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds 2) How do the properties and formation of high clouds relate to (i) deep convection and (ii) large-scale environmental factors? 2) How do the properties and formation of high clouds relate to (i) deep convection and (ii) large-scale environmental factors? 1) Relate the vertical structure, horizontal extent, ice we path, and radiative properties of large scale high cloude environmental factors.	rge-scale and local amic and dynamic and dynamic anysical properties extent, ice water tively generated high extent, ice water cale high clouds to	Minimum: Determine the sensitivity of boundary layer bull cloud physical and radiative properties to large-scale and lot environmental factors including thermodynamic and dynam properties. Enhanced: Adds to Minimum cloud microphysical properties and enhanced bulk cloud properties. O2 High Clouds Minimum: 1) Relate the vertical structure, horizontal extent, ice water path, and radiative properties of convectively generated clouds to convective vertical transport 2) Relate the vertical structure, horizontal extent, ice water path, and radiative properties of large scale high clouds environmental factors. Enhanced: Adds to Minimum microphysical properties of ice	properties of low clouds be determined by environmental factors? 2) How do the properties and formation of high clouds relate to (i) deep convection and (ii) large-scale	Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high		

A+CCP	4	CCP	Goal	Example Science Question	Objectives
			G2 Storm Dynamics Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within convective storms	 How does convective mass flux relate to the vertical distribution and microphysical properties of clouds and precipitation in deep convection? How do different convective storm systems contribute to vertical transports of heat, water, and other constituents within the atmosphere and how do these transports relate to storm environment and lifecycle? 	Minimum: Relate vertical motion within convective storms to their a) cloud and precipitation structures, b) microphysical properties, c) local environment thermodynamic and kinematic factors such as temperature, humidity, and large-scale vertical motion, and d) ambient aerosol loading. Enhanced: Improve measurements of convective storm vertical motion and storm characteristics in (a) and (b) of the Minimum objective to better address deep convection and diurnal variability. Further relate items in the Minimum objective to latent heating profiles, storm life cycle, ambient aerosol profiles, and surface properties.

A+CCP	4	CCP	Goal	Example Science Questions	Objectives
			G3 Cold Cloud and Precipitation Improve understanding of cold (supercooled liquid, ice, and mixed phase) cloud processes and associated precipitation and their coupling to mid-to-high latitude energy and water cycles.	 What is the distribution and phase of surface precipitation (rain, mixed phase, frozen and snowfall) and how does it influence the surface water and energy balance? What are the processes that govern phase partitioning and precipitation formation in cold clouds? What are the vertical structures of microphysics of cold-cloud precipitation from cloud top to near-surface and associated microphysical processes? How do mixed-phase properties of clouds impact their radiative properties and change the resultant radiative fluxes? 	O4 Cold Cloud and Precipitation Processes Minimum: Detect and quantify vertically integrated amounts of ice and liquid condensate (including precipitation) and relate these to vertical structure, cloud physical and radiative properties (including mixed-phase precipitation and snowfall), meteorological forcing and regime, orography, and surface properties. Enhanced: Enhancement of Minimum with an additional focus on: 1) vertical profiles of ice and liquid condensate, 2) cloud physical processes related to the density and microphysical characterization of snowfall and frozen precipitation in the column and near surface, and 2) characterization of atmospheric contributions to the surface water mass and energy balance at higher latitudes.

1) What are the major anthropogenic and natural sources of aerosol and how do they vary spatially and temporally? 2) What are the factors that relate aerosol microphysical properties over space and time in terms of 3D transport, spatially resolved emission sources and residual production and loss terms. 2) What are the factors that relate aerosol microphysical and optical properties to surface PM concentrations? 3) To what extent does long-range transport of smoke, dust, and other particulates impact regional near-surface air quality? Minimum: Quantify optical and microphysical aerosol properties in the PBL and free troposphere to improve process understanding, estimates of aerosol emissions, speciation, and predictions of near-surface particulate matter concentrations. Enhanced: Characterize variations in vertical profiles of optical and microphysical properties over space and time in terms of 3D transport, spatially resolved emission sources and residual production and loss terms. O6 Aerosol Wet Removal, Vertical Redistribution and Processing Minimum: Relate the vertical structure of aerosol properties to cloud and precipitation properties to improve understanding of processes impacting aerosol vertical transport, removal, and overall lifecycle in light and moderate precipitation regimes (> 5 mm/hr). Enhanced: Extend minimum to include heavy precipitation regimes (> 5 mm/hr), aerosol processing (including gaseous and aqueous production) and vertical transport to UTLS region.	A+CC	۲ S	Goal	Example Science Questions	Objectives
			Reduce uncertainty in key processes that link aerosols to weather, climate and air	 anthropogenic and natural sources of aerosol and how do they vary spatially and temporally? 2) What are the factors that relate aerosol microphysical and optical properties to surface PM concentrations? 3) To what extent does long-range transport of smoke, dust, and other particulates impact regional near-surface 	Minimum: Quantify optical and microphysical aerosol properties in the PBL and free troposphere to improve process understanding, estimates of aerosol emissions, speciation, and predictions of near-surface particulate matter concentrations. Enhanced: Characterize variations in vertical profiles of optical and microphysical properties over space and time in terms of 3D transport, spatially resolved emission sources and residual production and loss terms. O6 Aerosol Wet Removal, Vertical Redistribution and Processing Minimum: Relate the vertical structure of aerosol properties to cloud and precipitation properties to improve understanding of processes impacting aerosol vertical transport, removal, and overall lifecycle in light and moderate precipitation regimes (< 5 mm/hr). Enhanced: Extend minimum to include heavy precipitation regimes (> 5 mm/hr), aerosol processing (including gaseous and

Goal E		Objectives
G5 Aerosol Impacts on Radiation Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.	anthropogenic aerosols affect Earth's radiation budget and offset the warming due to greenhouse gases?	Minimum: Reduce uncertainties in estimates of: 1) global mean clear and all-sky shortwave direct radiative effects (DRE) to ±1.2 W/m² at TOA and the anthropogenic fraction, 2) regional TOA and surface DRE, and 3) Quantify the impacts of absorbing aerosol on atmospheric stability. Enhanced: Quantify the impact of absorbing aerosols on vertically resolved aerosol radiative heating rates and DRE commensurate with the uncertainties in global mean at TOA and surface. O8 Aerosol Indirect Effect Minimum: Provide measurements to constrain process level understanding of aerosol-warm cloud interactions to improve estimates of aerosol indirect radiative forcing. Enhanced: Provide measurements to constrain process level understanding of interactions of aerosol with cold and mixed-phase clouds to improve estimates of aerosol indirect radiative forcing.

ACCP Science Objectives 2 78 1 Low Cloud Feedback 2 High Cloud Feedback **3** Convective Storm Systems 4 Cold Cloud & Precipitatio 5 Aerosol Attribution and Air Quality 6 Aerosol Removal, Redistribution and Processing 7 Aerosol Direct Effect and Absorption **8** Aerosol Indirect Effect

A+CCP	A CCP		Objectives
			O1 Low Clouds Minimum: Determine the sensitivity of boundary layer bulk cloud physical and radiative properties to large-scale and local environmental factors including thermodynamic and dynamic properties.
			Enhanced: Adds to Minimum cloud <i>microphysical</i> properties and enhanced bulk cloud properties.

General Approach

- a) Complement and where possible expand on existing climate data records. Examine inter-annual cloud property changes associated with cloud-controlling factors (e.q., Klein et al., 2017.)
- b) Quantify low cloud-controlling processes via multi-variate analysis (e.g., Ming and Suzuki, 2018; etc)
- c) With a) & b) combine with models to test and understand process couplings

Role of Models – primary tool to integrate observations, test understanding & examine impacts on feedbacks

Role of Sub-orbital – cal/val variable retrievals, validate process interpretation, enhance process understanding with enhanced property measurement.

New and Improved

- a) Significant improvements of key cloud variables (LWP, cloud microphysics) including profiling, droplet concentrations, precipitation quantification
- b) Significantly improved global analysis, model moist physics, and contextual PoR capabilities.

	4	ССР	ОДО	POR	Utility Score	Geophysical Vari	ables (1 of 2)	Qualifiers		
	,	C	10)d	Othicy Score	Minimum	Minimum Enhanced			
	٧	٧	S	(√)	4.8	Cloud liquid water path				
	٧	٧	S	(√)	4.7	Cloud optical depth				
	٧	٧	S	(√)	4.7	Cloud droplet effective	radius			
	٧	٧	S	(√)	4.2	Cloud top phase				
	٧	٧		(√)	4.7	Hydrometeor vertical fe	eature mask	Cloud top height		
	٧	٧	S	(√)	4.0	Areal cloud fraction				
		٧		(√)	3.3	Precipitation phase	Profile			
		٧		(√)	4.0	Precipitation rate		Profile, <2 mm/hr, near sfc		
ļ	٧			(√)	2.7	Planetary Boundary Lay	er Height			
l				٧	4.7	Environmental tempera	iture	Profile		
l				٧	4.7	Environmental humidity	У	Profile		
l				٧	3.7	Environmental horizont	Environmental horizontal wind			
l				7	4.6	Environmental vertical	Profile			
	٧				3.7	Scattering ratio	Profile, VIS			
	٧				3.5	Full attenuation altitude	e			
	٧	٧		(√)	4.3	Cloud radiative effects,	SW & LW	Broadband, all sky – clear sky TOA flux diff.		

A+CCP	A	ССР	Objectives
			O1 Low Clouds Minimum: Determine the sensitivity of boundary layer bulk cloud physical and radiative properties to large-scale and local environmental factors including thermodynamic and dynamic properties. Enhanced: Adds to Minimum cloud microphysical properties and enhanced bulk cloud properties.

General Approach

- a) Complement and where possible expand on existing climate data records. Examine inter-annual cloud property changes associated with cloud-controlling factors (e.g. Klein et al., 2017.)
- b) Quantify low cloud-controlling processes via multi-variate analysis (e.g. Ming and Suzuki, 2018; etc)
- c) With a) & b) combine with models to test and understand process couplings

Role of Models – primary tool to integrate observations, test understanding & examine impacts on feedbacks

Role of Sub-orbital – cal/val variable retrievals, validate process interpretation, enhance process understanding with enhanced property measurement.

New and Improved

- a) Significant improvements of key cloud variables (LWP, cloud microphysics) including profiling, droplet concentrations, precipitation quantification
- b) Significantly improved global analysis, model moist physics, and contextual PoR capabilities.

	٨	ссь	ООО	POR	Utility Score	Geophysical Var	iables (2 of 2)	Qualifiers
ı	,	Ö	10	PC	Other Score	Minimum	Enhanced	Qualifiers
		٧			4.5	Cloud droplet concentr	ation	Layer
	٧	٧			3.8	Hydrometeor vertical fo	eature mask	Cloud base ht
		٧		(v)	4.0	Total liquid water path		
	٧				2.8	Scattering ratio		Profile, UV
Ī	٧	٧			3.0	Volumetric cloud fraction	on	
		٧			4.0	In-Cloud Vertical Air Ve	elocity	> 1 m/s , Profile
		٧			4.1	Cloud-top vertical velo	city	
		٧			4.3	Cloud-top horizontal w	vinds	
				٧	3.7	Diurnally resolved cloud cover		
			S	٧	4.0	Surface turbulent fluxe	s (land and ocean)	

A+CCP	4	ссь	Objectives	_	d CC B	ООО	POR	Utility Score	Geophysical Varia	<u>ıbles</u> (1 of 2)	Qualifiers
+ +		C			5	ō	PC	Othicy Score	Minimum	Enhanced	Qualifiers
			O2 High Clouds		٧		(v)	4.9	Ice Water Path		
	88	888	Minimum: 1) Relate the vertical structure, horizontal extent, ice		٧		(√)	3.9	Ice Water Content		Profile
			water path, and radiative properties of convectively	٧	٧	S	(v)	4.9	Cloud optical depth		
			generated high clouds to convective vertical transport	٧	٧			5.0	Hydrometeor vertical featu	ure mask	
			2) Relate the vertical structure, horizontal extent, ice	٧			(√)	4.3	Cloud geometric-top temp	erature	
	m		water path, and radiative properties of large-scale	٧			٧	4.5	Cloud areal extent		
			high clouds environmental factors. Enhanced: Adds to Threshold microphysical properties of				٧	3.7	Diurnally resolved cloud co	over	
			ice clouds.				٧	3.8	Diurnally resolved cloud to	p height	
a) Co	omple		and where possible expand on existing climate data records.		٧			4.4	In-cloud vertical air velocit	у	Profile, above melting layer at a minimum; Velocity minimum >2 m/s
cc	ntrol	ling fa	r-annual cloud property changes associated with cloud- ctors. In of high cloud-controlling processes, including convective		٧			3.4	Precipitation phase		Profile, melt.lyr also
tr	anspo	rt, rac	liative heating, precipitation, via multi-variate analysis				٧	3.9	Cloud lifecycle categories		
) combine with models to test and understand process couplings				٧	4.4	Environmental temperatur	-e	Profile
			- primary tool to integrate observations, test understanding & son feedbacks (e.g. between convection and high clouds)		٧		^	4.3	Environmental humidity		Profile
		•	tal – cal/val variable retrievals, validate process interpretation,				٧	4.3	Environmental horizontal v	wind	Profile
adva	nce p		understanding with enhanced property measurement.	٧	٧		(√)	4.7	Cloud radiative effects, SW	/ & LW	Broadband, all sky – clear sky TOA flux diff.
a) First time ability to make quantitative links to convective transport (vertical								4.0	Scattering ratio		Profile, VIS
b) Si c) Si	gnifica gnifica	ant im antly i	vective precipitation provements of key cloud variables mproved global analysis, model moist physics, and contextual	٧				3.8	Full attenuation altitude		
Po	PoR capabilities.										7 (1) (1)

A+CCP	А	CCP	Objectives
			 Minimum: Relate the vertical structure, horizontal extent, ice water path, and radiative properties of convectively generated high clouds to convective vertical transport Relate the vertical structure, horizontal extent, ice water path, and radiative properties of large-scale high clouds environmental factors.
			Enhanced: Adds to Threshold microphysical properties of ice clouds.

	4	CCP	00	POR	Utility Score	Geophysical Va	Ovalifiana							
	ď	8	ООО	PC	Othinty Score	Minimum	Enhanced	Qualifiers						
		٧		(√)	4.0	Precipitation rate	Profile							
	٧	٧			3.7	Ice crystal number concen	tration	Layer						
	٧	٧	S		3.8	Ice crystal particle size								
	٧				4.1	Particle asymmetry factor	Particle asymmetry factor							
Γ		٧		٧	4.2	Convective cloud cover								
	٧	٧			4	Radiative heating rate, SW	Radiative heating rate, SW & LW							
		٧			4.2	In-cloud vertical air velocit	ty	Full Profile,						
Γ	٧	٧			3.4	Scattering ratio		Profile, UV						
Γ		٧			3.6	Vertically integrated ice ma	ass flux	∆T GV						
		٧			3.4	Average vertical air velocity ΔT GV								
		٧			4.4	Rate of change of ice water	∆T GV							
		٧			3.7	Height of maximum vertica	∆T GV							
Γ		٧			3.8	Magnitude of maximum vertical motion ΔT GV								

A+CC P	<	CCP	Objectives	V	d O O	9	POR	Utility Score	Geophysical Variables (1 of 4)		Qualifiers
4		, in	O3 Convective Storm Systems	╢^	8	000	8	Othity Score	Minimum	Enhanced	- Qualifiers
			Minimum: Relate vertical motion within convective storms to their a) cloud and precipitation structures, b) microphysical properties, c) local environment thermodynamic and kinematic factors such as temperature,		٧			5.0	In-cloud vertical air v	velocity	Profile, above melting layer at a minimum; Velocity minimum >2 m/s
		933	humidity, and large-scale vertical motion, and d) ambient	٧	√		(√)	5.0	Hydrometeor vertica	al feature mask	E.g, reflectivity profile
			aerosol loading.	V	√		(√)	4.5	Cloud geometric-top	temperature	
		888	Enhanced: Improve measurements of convective storm	٧	√		(√)	3.5	Cloud top phase		
			vertical motion and storm characteristics in (a) and (b) of the Minimum objective to better address deep convection and		$oxed{oxed}$		٧	3.7	Diurnally resolved cl	oud cover	PoR Primary; Context
	diurnal variability. Further relate items in the Minimum objective to latent heating profiles, storm life cycle, ambient aerosol profiles, and surface properties.						٧	4.2	Diurnally resolved cl	oud top height	PoR Primary; Context
							(√)	5.0	Precipitation rate		Profile
		888	aerosor promes, and surface properties.		٧		(√)	4.0	Precipitation phase	Profile, liquid/ mixed/frozen	
			Approach		٧		(√)	4.3	Ice water path		
	-	•	h - Establish global convective structure climatologies that cterize deep convective processes through measurement of		٧		٧	4.2	Convective classifica	ition	Org./intensity/depth; PoR for org. context
cor	vective	scale v	vertical motion, cloud, precipitation, and surrounding column s. Leverage temporal/spatial coverage of GEO and LEO PoR		٧		(√)	4.5	Precipitation Discrim (stratiform/convecti	nination ve)	
			d observations and global/regional analysis systems.	V				2.6	Scattering ratio		Profile, VIS
			testing and evaluation of ACCP observational impacts	V				2.4	Full attenuation altitu	ude	
Roll corr evo life Cal Ne corr env	le of Sub nvective plution o cycle, ar /val for s w and In related properties	precipore of converse of conve	lel physical representation of convective cloud processes. al - In situ and improved space-time sampling of coupled itation processes over a full range of intensities, coupled ective detrainment and impacts on in situ anvil properties and sitivity to perturbations in the ambient cloud environment. e measurements and retrieval algorithms. ed - a) global convective scale vertical motion profiles and s metrics, and b) measurements of hydrometeor structure and osol properties, PoR measurements and capabilities, and global solution/physics.								② [n介] 乙

	Minimum: Relate vertical motion within convective storms to their a) cloud and precipitation structures,
	b) microphysical properties, c) local environment thermodynamic and kinematic factors such as temperature, humidity, and large-scale vertical motion, and d) ambient aerosol loading.
	Enhanced: Improve measurements of convective storm vertical motion and storm characteristics in (a) and (b) of the Minimum objective to better address deep convection and diurnal variability. Further relate items in the Minimum objective to latent heating profiles, storm life cycle, ambient aerosol profiles, and surface properties.
	500
	Approach
stat conv	Approach ral Approach - Establish global convective structure climatologies that tically characterize deep convective processes through measurement of ective scale vertical motion, cloud, precipitation, and surrounding column old properties. Leverage temporal/spatial coverage of GEO and LEO PoR ground-based observations and global/regional analysis systems.
stat conv aero with	ral Approach - Establish global convective structure climatologies that tically characterize deep convective processes through measurement of ective scale vertical motion, cloud, precipitation, and surrounding column ol properties. Leverage temporal/spatial coverage of GEO and LEO PoR

convective precipitation processes over a full range of intensities, coupled evolution of convective detrainment and impacts on in situ anvil properties and lifecycle, and sensitivity to perturbations in the ambient cloud environment.

New and Improved - a) global convective scale vertical motion profiles and correlated process metrics, and b) measurements of hydrometeor structure and environment aerosol properties, PoR measurements and capabilities, and global

Cal/val for satellite measurements and retrieval algorithms.

model analysis resolution/physics.

O3 Convective Storm Systems

Objectives

ODO POR

Utility Score

4 | 0 0

CCP

⋖

		٧	5.0	Environmental temperature	Profile, used for stability parameters as well
		>	5.0	Environmental humidity	Profile, used for stability parameters as well
		٧	4.5	Environmental horizontal wind	Profile, used for shear calculation
		٧	4.0	Environmental vertical wind	Profile
V	S	(√)	4.0	Aerosol Optical Depth	Column and PBL UV, VIS, NIR
٧			3.7	Aerosol Fine Mode Optical Depth	Column, PBL
٧			3.7	Aerosol Non-spherical AOD Fraction	Column, PBL
		٧	3.7	Lightning	PoR

Geophysical Variables (2 of 4)

Enhanced

Minimum

Qualifiers

A+CC P	A	ССР	Objectives	<	<u></u>	ОДО	POR	Utility Score	Geophysical Variables (3 of 4)		Qualifiers
4			O3 Convective Storm Systems		٥	ō	Δ	Janey Jeore	Minimum	Enhanced	Qualifiers
			Minimum: Relate vertical motion within convective storms to their a) cloud and precipitation structures, b) microphysical properties, c) local environment		٧			5.0	In-cloud vertical a	air velocity	Profile, measure below melting layer; Velocity minimum >2 m/s
			thermodynamic and kinematic factors such as temperature, humidity, and large-scale vertical motion, and d) ambient		٧		(√)	4.0	Latent heating		Profile, vertical velocity constrained
			aerosol loading.	٧	٧		(√)	4.0	Total liquid water	path	Ice + liquid (full column)
			Enhanced: Improve measurements of convective storm vertical motion and storm characteristics in (a) and (b) of the Minimum objective to better address deep convection and		٧		>	4.0	Cloud lifecycle ca	tegories	PoR or observing system temporal/area context
			nal variability. Further relate items in the Minimum ective to latent heating profiles, storm life cycle, ambient pool profiles, and surface properties.		٧		(√)	4.0	Precipitation particle size		Profile, PSD char. diameter; multi-radar/radiometer frequency
			Approach		٧		(√)	4.0	Precipitation rate	, 2D @ surface	Swath-mapped precipitation rate
Gen	eral Apı	proach	1 - Establish global convective structure climatologies that		٧			4.3	Convective core s	ize	Need swath view
			terize deep convective processes through measurement of ertical motion, cloud, precipitation, and surrounding column	٧				3.8	Aerosol extinction	า	Profile, VIS, NIR
aero	sol prop	perties	s. Leverage temporal/spatial coverage of GEO and LEO PoR	٧				2.8	Aerosol effective	radius	Profile
			d observations and global/regional analysis systems. esting and evaluation of ACCP observational impacts	٧				3.0	Aerosol non-sphe	rical ext. fraction	Profile & column
			el physical representation of convective cloud processes.	٧				3.3	Aerosol absorption	on	Profile
			al - In situ and improved space-time sampling of coupled tation processes over a full range of intensities, coupled				٧	4.0	Surface elevation		Topography
evol	ution of	f conve	ective detrainment and impacts on in situ anvil properties and			S, D	٧	3.5	Surface type		Land, water, coastline
Cal/	val for s	atellit	itivity to perturbations in the ambient cloud environment. e measurements and retrieval algorithms.			S, D	٧	3.8	Surface classificat	ion	Land surface cover class
		-	ed - a) global convective scale vertical motion profiles and smetrics, and b) measurements of hydrometeor structure and		(√)		٧	3.8	Surface turbulent	fluxes	Latent, sensible heat flux
envi	ronmen	nt aero	sol properties, PoR measurements and capabilities, and global	٧				3.7	Scattering ratio		Profile, UV
11100	iei alidly	/313 1 65	solution/physics.								? (1)

A+CC P	А	ССР	Objectives
			O3 Convective Storm Systems Minimum: Relate vertical motion within convective storms to their a) cloud and precipitation structures, b) microphysical properties, c) local environment thermodynamic and kinematic factors such as temperature, humidity, and large-scale vertical motion, and d) ambient aerosol loading. Enhanced: Improve measurements of convective storm vertical motion and storm characteristics in (a) and (b) of th Minimum objective to better address deep convection and diurnal variability. Further relate items in the Minimum objective to latent heating profiles, storm life cycle, ambien aerosol profiles, and surface properties.

General Approach - Establish global convective structure climatologies that
statistically characterize deep convective processes through measurement of
convective scale vertical motion, cloud, precipitation, and surrounding column
aerosol properties. Leverage temporal/spatial coverage of GEO and LEO PoR
with ground-based observations and global/regional analysis systems.

Role of models - testing and evaluation of ACCP observational impacts on improved model physical representation of convective cloud processes.

Role of Sub-orbital - In situ and improved space-time sampling of coupled convective precipitation processes over a full range of intensities, coupled evolution of convective detrainment and impacts on in situ anvil properties and lifecycle, and sensitivity to perturbations in the ambient cloud environment.

Cal/val for satellite measurements and retrieval algorithms.

New and Improved - a) global convective scale vertical motion profiles and correlated process metrics, and b) measurements of hydrometeor structure and environment aerosol properties, PoR measurements and capabilities, and global model analysis resolution/physics.

	4	CCP	одо	POR	Utility Score	Geophysical V	ariables (4 of 4)	Qualifiers
5						Minimum	Enhanced	
	٧				3.8	Aerosol Number Cor	ncentration	Profile
2,		٧			3.8	Vertically integrate	ed ice mass flux	ΔT GV
		٧			3.9	Average vertical ai	r velocity	ΔT GV
ne		٧			4.1	Rate of change of	ice water path	ΔT GV
k		٧			3.7	Height of maximu	m vertical motion	ΔT GV
nt		٧			3.7	Magnitude of max motion	imum vertical	ΔT GV

A+CCP	4	CCP	Objectives	⋖	Utility Score Geophysical V		Geophysical Varia	<u>ables</u> (1 of 2)	Qualifiers						
∢			Cald Claud and Dunninitation Dunnages		۷	0	2	offility score	Minimum	Enhanced	Qualifiers				
			O4 Cold Cloud and Precipitation Processes Minimum: Detect and quantify vertically integrated amounts	٧	٧			4.3	Hydrometeor Vertical F	eature Mask					
		of ice and liquid condensate (including precipitation) and						4.0	Cloud geometric-top te						
	relate these to vertical structure, cloud physical and radiative							4.8	Ice water path						
			properties (including mixed-phase precipitation and snowfall), meteorological forcing and regime, orography, and surface properties.		٧		(v)	5.0	Precipitation rate		Profile, near surface (<500 m)				
		88	hanced: Enhancement of Minimum with an additional focus		٧		(√)	5.0	Precipitation phase		Profile				
	on: 1) vertical profiles of ice and liquid condensate, 2) cloud						(√)	4.5	Total liquid water path						
			physical processes related to the density and microphysical characterization of snowfall and frozen precipitation in the	٧	٧	S		4.3	Cloud phase		Profile				
	column and near surface, and 2) characterization of			٧	٧		٧	3.8	Cloud radiative effects,	Broadband, all sky – clear sky TOA and sfc flux diff.					
		energy balance at higher latitudes.						3.3	Scattering ratio	Profile, VIS					
	Approach (1 of 2)							3.3	Full attenuation altitude						
Gen	ral A	Appro	., , , ,				٧	4.4	Environmental horizont	al wind	Profile, from reanal.				
			ency, multi-sensor approach for improving snowfall rate and micro-				٧	4.7	Environmental tempera	ature	Profile, from reanal.				
	•		perties (Grecu and Olson 2008, Grecu et al. 2018, Leinonen et al. 2018) tion of vertical structures, profiles of snowfall rate and microphysical				٧	4.5	Environmental humidity	у	Profile, from reanal.				
р	oper	ties re	elated statistically to forcing/regime, orography, sfc fluxes				٧	4.5	Surface elevation		Topography				
			wfall/cold cloud processes regionally, as a function of cloud depth			S, D	٧	3.3	Surface type		Land, water, coastline				
sr	(Kulie et al 2016); 2D histograms and contributions of snow rates in PDF to total snowfall, contributions as a function of GVs such as echo-top height, passive microwave TBs; climatologies of mixed-phase clouds					S, D	٧	2.8	Surface classification		Land surface cover class				
	Role of Models – primary tool to integrate observations, test understanding & examine representation of cold cloud processes in models.						٧	3.8	Surface turbulent fluxes	5	Latent, sensible				
Role	of Su	ıb-orl	oital – cal/val variable retrievals, validate process interpretation,						Approach (1 of 2	<u> </u>					
New	advance process understanding with in-situ & remotely sensed microphysical data. New and Improved a) Improved range of precipitation measurements						a) Multi-sensor retrievals for constraints on both liquid and ice microphysical properties (e.g., precipitation rates, particle size, density of ice) b) Possible information on vertical motion in regions of heavier snowfall rates								

A+CCP	∢	d C C	Objectives	<	 a b	S S	Utility Score	Geophysical Va	riables (2 of 2)	Qualifiers
+ +		0			5 5	5 ~	Julia State	Minimum	Enhanced	Quanners
		88	O4 Cold Cloud and Precipitation Processes		٧		4.3	Ice water content		Profile
		88	Minimum: Detect and quantify vertically integrated amounts of ice and liquid condensate (including precipitation) and		٧		3.8	Liquid water content		Profile
		88	relate these to vertical structure, cloud physical and radiative properties (including mixed-phase precipitation and snowfall),		٧		4.5	Precipitation particle s	ize	Profile, all phases
		88	meteorological forcing and regime, orography, and surface	٧			3.8	Particle shape (aspect	ratio, roughness)	
		88	properties. Enhanced: Enhancement of Minimum with an additional focus		٧		4.5	Precipitation (ice) part	icle density	Profile
			on: 1) vertical profiles of ice and liquid condensate, 2) cloud physical processes related to the density and microphysical characterization of snowfall and frozen precipitation in the				4.8	Precipitation rate, 2D@	Surface	Swath-mapped precipitation rate
			column and near surface, and 2) characterization of		٧		3.5	In-cloud vertical air ve	locity	Profile
		**	atmospheric contributions to the surface water mass and		٧		3.8	Areal cloud fraction		
		88	energy balance at higher latitudes.	٧			3.8	Blowing surface snow	detection	
			Approach (1 of 2)	٧	١ ١	S (v)	3.3	Cloud optical depth		
		ppro		٧			3.1	Scattering ratio		Profile, UV
pl b) Cl	nysica narac	al pro teriza	ency, multi-sensor approach for improving snowfall rate and micro- perties (Grecu and Olson 2008, Grecu et al. 2018, Leinonen et al. 2018) tion of vertical structures, profiles of snowfall rate and microphysical	٧	٧	V	3.6	Surface and TOA radia	tion fluxes	LW, SW broadband. Monthly fluxes
c) PI	DFs o	fsnov	elated statistically to forcing/regime, orography, sfc fluxes vfall/cold cloud processes regionally, as a function of cloud depth							
			016); 2D histograms and contributions of snow rates in PDF to total ntributions as a function of GVs such as echo-top height, passive					Approach (1 of 2))	
			Bs; climatologies of mixed-phase clouds					raints on both liquid and	ice microphysical prop	erties (e.g.,
exan	nine r	epres	 primary tool to integrate observations, test understanding & entation of cold cloud processes in models. 				n rates, particle size, ormation on vertical	density of ice) motion in regions of hea	vier snowfall rates	
			pital – cal/val variable retrievals, validate process interpretation, as understanding with in-situ & remotely sensed microphysical data.							
		Impro	* '							

a) Improved range of precipitation measurements

A+CCP	4	d C	Objectives	۷	ссР	ОДО	POR	Utility Score	Geophysical Va	riables (1 of 3)	Qualifiers					
A+(8	Objectives		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		P	Ocean: 0.3	Minimum	Enhanced	Qualifiers					
			O5 Aerosol Attribution and Air Quality	٧				(3,1.2)	Aerosol Extinction (Total)		VIS, NIR Profile (PBL,above)					
	8		Minimum: Quantify optical and microphysical aerosol properties in the PBL and free troposphere to improve process understanding, estimates of aerosol emissions,	٧				(3,1.2)	Aerosol Non-spherical Exti	nction Fraction	VIS, NIR Profile (PBL,above)					
	8		speciation, and predictions of near-surface particulate matter concentrations.	٧		S	(√)	(2,3)	Aerosol Optical Depth		UV, VIS, NIR Column,PBL					
	8		Enhanced: Characterize changes in vertical profiles of optical and microphysical properties over space and time in terms of 3D transport, spatially resolved emission sources and residual production and loss terms.	٧				(1.8,2.6)	Aerosol Absorption Optica	l Depth	UV, VIS Column, PBL					
	8			٧				(1.8,2.6)	Aerosol Fine Mode Optica	l Depth	UV, VIS Column, PBL					
<u> </u>							(√)	(0.7,1.1)	Aerosol Real Index of Refra	UV, VIS Column, PBL						
Gener	•	•		٧			(√)	(0.7,1.1)	Aerosol Imaginary Index o	UV, VIS Column, PBL						
арр	roac	hes:	asurements to estimate aerosol speciation using the following timation algorithm using as prior aerosol state from an	٧				(1.8,3)	Aerosol Non-Spherical AO	D Fraction	UV, VIS Column, PBL					
	assim	nilatio	n system that incorporates the aerosol PoR erosol typing based on clustering of aerosol optical properties	٧				(1.2,3)	Aerosol Extinction to Backs	scatter Ratio	UV, VIS, NIR Column, PBL					
			ations used to assess impact on emissions, and through revised pact on forecasts of near-surface particulate concentrations	٧				4.8	Aerosol-Cloud Feature Ma	sk	Profile					
c) Mc	del s	ensiti	vity studies, validated by ACCP data, used to gain insight into						Approach (2 o	f 2)						
d) Coi Exa	ment a	neterizations. and where possible expand on existing climate data recordsannual variability of aerosol emissions, optical properties and bal AQ.	unde New	Role of Sub-orbital – cal/val variable retrievals, validate process interpretation, advance process understanding with enhanced property measurement. Linking of optical to chemical aerosol properties. New and Improved												
			- primary tool to integrate observations, test understanding & and feedbacks.	e	Significant improvements of key aerosol variables (vertically/spectrally resolved aerosol abso extinction, fine mode fraction over land, etc.)											
	examine impacts and feedbacks.							 b) Improved global emissions and near surface aerosol characterization, with benefits for AC forecasts. 								

A+CC CCP		СР	Objectives	⋖	d DO	ОДО	8	Land: 0.7	Geophysical vari	<u>ables</u> (2 01 3)	Qualifiers
¥.		Š	5.5,-3.100		ð	0	P(Ocean: 0.3	Minimum	Enhanced	Quantiers
	88		O5 <u>Aerosol Attribution and Air Quality</u>	٧				3.6	Scattering ratio		VIS Profile
	88		Minimum: Quantify optical and microphysical aerosol	٧			(√)	4.1	Planetary Boundary Layer	Height	
	88		properties in the PBL and free troposphere to improve process understanding, estimates of aerosol emissions,				٧	4.2	Environmental Temperatu	re	Profile
			speciation, and predictions of near-surface particulate				>	4.2	Environmental Humidity		Profile
	88		matter concentrations. Enhanced: Characterize changes in vertical profiles of					(1.8,2.6)	Aerosol Effective Radius		Column, PBL
	88		Enhanced: Characterize changes in vertical profiles of optical and microphysical properties over space and time	٧			(√)	4.8	Aerosol PM2.5 Concentrat	ion	Surface
	88		in terms of 3D transport, spatially resolved emission sources and residual production and loss terms.	٧				(2.8,1.8)	Aerosol Effective Radius		Profile (PBL,above)
				٧				(2.8,1.8)	Aerosol Absorption		UV, VIS Profile(PBL,above)
	Approach (1 of 2)							(3,2)	Aerosol Fine Mode Extinct	ion	UV, VIS Profile (PBL,above)
a) U	General Approach a) Use ACCP measurements to estimate aerosol speciation using the following approaches:							(3,2)	Aerosol Extinction to Backs	scatter	UV, VIS Profile (PBL,above)
1	Optimal estimation algorithm using as prior aerosol state from an assimilation system that incorporates the aerosol PoR							(3,2)	Aerosol extinction (total)		UV Profile(PBL,above)
			aerosol typing based on clustering of aerosol optical properties lations used to assess impact on emissions, and through revised						Annuarch /2 of 2		

Role of Sub-orbital – cal/val variable retrievals, validate process interpretation, advance process

understanding with enhanced property measurement. Linking of optical to chemical aerosol properties.

emissions impact on forecasts of near-surface particulate concentrations

c) Model sensitivity studies, validated by ACCP data, used to gain insight into

d) Complement and where possible expand on existing climate data records.

Role of Models – primary tool to integrate observations, test understanding &

Examine inter-annual variability of aerosol emissions, optical properties and

process parameterizations.

examine impacts and feedbacks.

impact on global AQ.

New and Improved

forecasts.

a) Significant improvements of key aerosol variables (vertically/spectrally resolved aerosol absorption and

extinction, fine mode fraction over land, etc.)

Geophysical Variables (2 of 3)

Approach (2 of 2)

b) Improved global emissions and near surface aerosol characterization, with benefits for AQ analysis and

A	CCP	ogo	POR	Utility Score Land: 0.7	Geophysical Vari	ables (3 of 3)	Qualifi
,	כו	Ю)d	Ocean: 0.3	Minimum	Enhanced	Quaiiii
٧				3.0	Scattering ratio		UV Profile
٧				3.0	Aerosol Plume-top Vertica	Velocity	
٧				3.0	Aerosol Plume-top Horizor	ntal Velocity	
			٧	4.3	Environmental Horizontal	Wind	Profile
			٧	4.0	Environmental Vertical Wi	nd	Profile
							-

Approach (2 of 2)

a) Significant improvements of key aerosol variables (vertically/spectrally resolved aerosol absorption and

b) Improved global emissions and near surface aerosol characterization, with benefits for AQ analysis and

Qualifiers

O5 Aerosol Attribution and Air Quality Minimum: Quantify optical and microphysical aerosol properties in the PBL and free troposphere to improve process understanding, estimates of aerosol emissions, speciation, and predictions of near-surface particulate concentrations. **Enhanced:** Characterize changes in vertical profiles of optical and microphysical properties over space and time in terms of 3D transport, spatially resolved emission sources and residual production and loss terms. Approach (1 of 2)

Objectives

General Approach

A+CCP

- a) Use ACCP measurements to estimate aerosol speciation using the following approaches:
 - 1) Optimal estimation algorithm using as prior aerosol state from an
 - assimilation system that incorporates the aerosol PoR
- 2) Empirical aerosol typing based on clustering of aerosol optical properties b) Inverse calculations used to assess impact on emissions, and through revised emissions impact on forecasts of near-surface particulate concentrations

c) Model sensitivity studies, validated by ACCP data, used to gain insight into process parameterizations. d) Complement and where possible expand on existing climate data records.

Examine inter-annual variability of aerosol emissions, optical properties and impact on global AQ.

Role of Models – primary tool to integrate observations, test understanding & examine impacts and feedbacks.

understanding with enhanced property measurement. Linking of optical to chemical aerosol properties.

forecasts.

extinction, fine mode fraction over land, etc.)

New and Improved

Role of Sub-orbital - cal/val variable retrievals, validate process interpretation, advance process

A+CCF	⋖	9	Objectives	4	8	000	POR	Utility Score	Geophysical \	<u>/ariables</u> (1 of 3)	Qualifiers
Ä			OC Assessed West Developed Ventical Development		٦	ō	P(ounty out to	Minimum	Enhanced	Qualifiers
			O6 <u>Aerosol Wet Removal, Vertical Redistribution</u> and Processing		٧		(√)	4.5	Total Liquid Water Path		
			Minimum: Relate the vertical structure of aerosol	٧	٧	S	(√)	4.0	Cloud Optical Depth		
			properties to cloud and precipitation properties to	٧	٧	S	(√)	5.0	Cloud Droplet Effective R	adius	
			improve understanding of processes impacting aerosol vertical transport, removal, and overall lifecycle in light		٧	П	(√)	4.5	Precipitation rate, 2D @	surface	< 2mm/hr
			and moderate precipitation regimes (< 5 mm/hr). Enhanced: Extend minimum to include heavy		٧		(v)	4.0	Precipitation Phase		Profile, near- surface included
			precipitation regimes (> 5 mm/hr), aerosol processing (including gaseous and aqueous production) and vertical transport to UTLS region.		٧		(√)	4.8	Precipitation Rate		Profile, near- surface included, < 2mm/hr
							٧	4.4	Environmental Temperat	ure	Profile
			Approach – 1 of 2				٧	4.4	Environmental Humidity		Profile
	eral A						٧	3.8	Environmental Horizonta	l Wind	Profile
,			servations to estimate aerosol amount, size and optical sing following approaches:				٧	4.4	Environmental Vertical V	/ind	Profile
1			stimation algorithm using as prior aerosol state from an	٧			(√)	4.5	Planetary Boundary Laye	r Height	

- - Optimal estimation algorithm using as prior aerosol state from an
 - assimilation system that incorporates the aerosol PoR
 - 2) Self-contained aerosol retrievals obtained with ACCP active and passive measurements and PoR if co-located.
- b) Approach for Processing and Removal rely on geostationary passive aerosol data to characterize aerosol removal processes before and after clouds/precipitation events.
- c) Changes in aerosol properties (size, absorption, etc.) will be used to characterize processing. Reduction in aerosol amount will be used to
- characterize removal, alongside concurrent cloud and precipitation properties. d) Complement and where possible expand on existing climate data records. Examine inter-annual variability of aerosol processing and removal. Role of Models - primary tool to integrate observations, test understanding &

examine impacts and feedbacks.

Approach - 2 of 2

Role of Sub-orbital - cal/val variable retrievals, validate process interpretation, enhance process understanding with enhanced property measurement. Unless space component include multiple ACCP

b) By means of the concurrent A and CCP measurements we will achieve significantly improved global

satellites on a train, a comprehensive campaign is necessary to address aerosol redistribution.

New and Improved

Planetary Boundary Layer Height

- a) Significant improvements of key aerosol variables (vertically resolved aerosol absorption and extinction, fine mode fraction over land, etc.)

Ŧ.	_	ΙŬ	objectives -	∢	CC	Δ.	ЬО	Utility Score			Qualifiers
▼			Of Aprocal West Personal Versical Pedietribution		C	ОО	d	,	Minimum	Enhanced	Qualifiers
			O6 Aerosol Wet Removal, Vertical Redistribution and Processing	٧				(3,2)	Aerosol Extinction (Total)		VIS & NIR Profile (PBL,above)
			Minimum: Relate the vertical structure of aerosol properties to cloud and precipitation properties to improve understanding of processes impacting aerosol					(3,2)	Aerosol Non-spherical Ext	inction Fraction	VIS & NIR Profile (PBL, above)
			vertical transport, removal, and overall lifecycle in light and moderate precipitation regimes (< 5 mm/hr).	٧		S	(√)	(1.8,3)	Aerosol Optical Depth		UV, VIS, NIR Column, PBL
			Enhanced: Extend minimum to include heavy precipitation regimes (> 5 mm/hr), aerosol processing	٧				(1.6,2.4)	Aerosol Absorption Optic	al Depth	UV & VIS Column, PBL
			(including gaseous and aqueous production) and vertical transport to UTLS region.	٧				(1.8,2.7)	Aerosol Fine Mode Optica	al Depth	UV, VIS Column, PBL
								(1.8,2.7)	Aerosol effective radius		Column, PBL
Gon	eral A	nnros	Approach – 1 of 2	٧			(√)	(1.6,2.4)	Aerosol Real Index of Ref	raction	UV, VIS Column, PBL
a) U	lse AC	CP ob	servations to estimate aerosol amount, size and optical sing following approaches:	٧			(√)	(1.6,2.4)	Aerosol Imaginary Index of	of Refraction	UV, VIS Column, PBL
1	Opti assii	imal e milatio	stimation algorithm using as prior aerosol state from an on system that incorporates the aerosol PoR	٧				(1.8,2.7)	Aerosol Non-spherical AC	D Fraction	UV, VIS Column, PBL
2	•		ined aerosol retrievals obtained with ACCP active and passive nents and PoR if co-located.						Approach – 2	of 2	
d cl	ata to louds/	chara preci _l	r Processing and Removal rely on geostationary passive aerosol cterize aerosol removal processes before and after pitation events. erosol properties (size, absorption, etc.) will be used to	un	der	star	nding	with enhanced p	riable retrievals, validate p property measurement. Unl ensive campaign is necessa	ess space component inc	lude multiple ACCP
cl	haract	erize	processing. Reduction in aerosol amount will be used to removal, alongside concurrent cloud and precipitation properties. and where possible expand on existing climate data records.		Sig	nific		nprovements of	key aerosol variables (verti n over land, etc.)	cally resolved aerosol ab	sorption and

Ō

Objectives

Examine inter-annual variability of aerosol processing and removal.

examine impacts and feedbacks.

Role of Models - primary tool to integrate observations, test understanding &

analysis, model representation of key aerosol processes, and contextual PoR capabilities.

Geophysical Variables (2 of 3)

Qualifiers

b) By means of the concurrent A and CCP measurements we will achieve significantly improved global

		1	8		\perp					Coldinii, i DL
			Minimum: Relate the vertical structure of aerosol	٧				4.8	Aerosol-Cloud Feature Mask	Profile
			properties to cloud and precipitation properties to improve understanding of processes impacting aerosol	٧				(3,2)	Aerosol Effective Radius	Profile
			vertical transport, removal, and overall lifecycle in light and moderate precipitation regimes (< 5 mm/hr).	٧				(2.7,18)	Aerosol Absorption	UV & VIS Profile (PBL,above
			Enhanced: Extend minimum to include heavy				٧	3.6	Environmental Horizontal Wind	Profile (PBL,above
			precipitation regimes (> 5 mm/hr), aerosol processing				٧	4.0	Environmental Vertical Wind	Profile (PBL,aboive
			(including gaseous and aqueous production) and vertical transport to UTLS region.	٧				(2.9,1.9)	Aerosol Fine Mode Extinction	UV, Vis Profile (PBL,above
			Approach – 1 of 2		٧		(√)	4.8	Precipitation Rate	Profile,> 2mm/hr
Ge	neral A	pproa		V	٧			4.0	Volumetric Cloud Fraction	
a)	Use AC	CP ob	servations to estimate aerosol amount, size and optical		٧			4.0	In-Cloud Vertical Air Velocity	Profile, > 2 m/s
	1) Opti	imal e	sing following approaches: stimation algorithm using as prior aerosol state from an on system that incorporates the aerosol PoR	٧				(3,2)	Aerosol Extinction to Backscatter Ratio	UV, VIS Profile (PBL,above
			ined aerosol retrievals obtained with ACCP active and passive nents and PoR if co-located.						Approach – 2 of 2	
	data to clouds/	chara preci _l	r Processing and Removal rely on geostationary passive aerosol acterize aerosol removal processes before and after potation events.	und	dersta	andi	ng wi	th enhanced pr	able retrievals, validate process interpretation, enhoperty measurement. Unless space component inclusive campaign is necessary to address aerosol redi	ude multiple ACCP
	charact charact	terize terize	erosol properties (size, absorption, etc.) will be used to processing. Reduction in aerosol amount will be used to removal, alongside concurrent cloud and precipitation properties. and where possible expand on existing climate data records.	a) S	Signif extin	ficar ctio	n, fine	rovements of k mode fraction	ey aerosol variables (vertically resolved aerosol absover land, etc.)	·

000 SQ.

Utility Score

(1.4, 2.1)

2

⋖

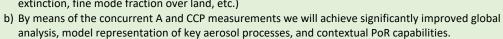
٧

A+CCP

S

⋖

Objectives


O6 <u>Aerosol Wet Removal, Vertical Redistribution</u>

and Processing

Examine inter-annual variability of aerosol processing and removal.

examine impacts and feedbacks.

Role of Models - primary tool to integrate observations, test understanding &

Qualifiers

Profile (PBL, above) Profile (PBL, above) Profile (PBL, aboive)

UV, VIS

Column, PBL Profile Profile UV & VIS

Geophysical Variables (3 of 3)

Aerosol Extinction to Backscatter Ratio

Enhanced

Minimum

<u> </u>		٩		A	CCP		POR	Utility Score	Geophysical Va	riables (1 of 2)	Qualifiers
A+CCP	⋖	ССР	Objectives	1	36 33		2	Othicy Score	Minimum	Enhanced	Quaimers
	80		O7 Aerosol Direct Effects and Absorption	٧				(1.5,2.3)	Aerosol Extinction (Total)		VIS & NIR, Profile (PBL,above)
	×		Minimum: Reduce uncertainties in estimates of: 1) global mean clear and all-sky shortwave direct					(1.5,2.3)	Aerosol Non-spherical Exti	nction Fraction	VIS & NIR Profile (PBL, above PBL)
	×		radiative effects (DRE) to ±1.2 W/m² at TOA and the	٧	S	((√)	(3,2)	Aerosol Optical Depth		UV, VIS, NIR Column, PBL
	×		anthropogenic fraction, 2) regional TOA and surface DRE, and 3) Quantify the impacts of absorbing aerosol	٧		((√)	(3,2)	Aerosol Absorption Optica	l Depth	UV,VIS Column, PBL
	×		on atmospheric stability. Enhanced: Quantify the impact of absorbing aerosols	٧		((√)	(2.7,1.8)	Aerosol Fine Mode Optical	Depth	UV, VIS Column, PBL
			on vertically resolved aerosol radiative heating rates					(2.7,1.8)	Aerosol Effective Radius		Column, PBL
	88		and DRE commensurate with the uncertainties in global mean at TOA and surface.	٧		((√)	(2.4,1.6)	Aerosol Real Index of Refra	action	UV, VIS Column, PBL
	×		8.626	٧		((√)	(2.4,1.6)	Aerosol Imaginary Index of	Refraction	UV, VIS Column, PBL
			Approach	٧				(2.6,1.7)	Aerosol Asymmetry Param	eter	VIS Colum, PBL
Gei	neral a	pproa	ch	٧				(2.8,1.9)	Aerosol Non-Spherical exti	nction Fraction	UV, VIS Column, PBL
a)	Compu	ite TO	A SW aerosol direct radiative effect from observed aerosol operties (e.g., Oikawa et al 2018; Thorsen et al 2019)	٧				3.5	Aerosol Extinction to Backs	scatter Ratio	UV, VIS VIS, NIR, column
			propagenic fraction of DRE using aerosol speciation	٧				5.0	Aerosol-Cloud Feature Mas	sk	Profile
			s in O5 and O6.				٧	4.6	Environmental Temperatu	re	Profile
			ospheric heating due to aerosol absorption. changes in atmospheric stability due to aerosol absorption				٧	4.6	Environmental Humidity		Profile
			- used to estimate impacts of aerosol absorption on	٧			٧	4.4	Surface Albedo		
			ating and aerosol-cloud radiative interactions.	٧	٧			3.3	Cloud Optical Depth		
Rol	e of Su	ıb-orb	ital – validation of satellite retrievals, aerosol optical models.	٧	٧	((√)	2.5	Cloud Droplet Effective Rad	dius	
Ne	w and	Impro	ved - Significant improvements in key aerosol variables	х	٧			4.8	Areal Cloud Fraction		
(ex	tinctio	n profi	les, absorption, size), especially over land.	٧	٧		٧	3.5	Radiative fluxes (derived)		SW Surface, TOA
											? ⋓ 🔂 29

<u>ی</u>		_		_	9	l o	OR.	Utility Score	Geophysical Va	ariables (2 of 2)	Qualifiers
A+CCP	⋖	CCP	Objectives		8	10)d	Othicy Score	Minimum	Enhanced	Quanners
	88		O7 Aerosol Direct Effects and Absorption	٧	٧		٧	3.5	Radiative fluxes (derived)		LW Surface, TOA
	88		Minimum: Reduce uncertainties in estimates of: 1)	٧				(2,3)	Aerosol Effective Radius		Profile
	▩		global mean clear and all-sky shortwave direct radiative effects (DRE) to ±1.2 W/m ² at TOA and the	٧				(2,3)	Aerosol Absorption		UV,VIS Profile (PBL,above)
	$^{\infty}$		anthropogenic fraction, 2) regional TOA and surface DRE, and 3) Quantify the impacts of absorbing aerosol	٧				(1.8,2.7)	Aerosol Fine Mode Extinct	ion	UV, VIS Profile (PBL,above)
	888		on atmospheric stability.	٧	٧		٧	3.7	Radiative heating rate, SW		Profile, aerosol
	畿		Enhanced: Quantify the impact of absorbing aerosols					(2,3)	Aerosol Extinction to Backs	catter	UV, VIS Profile
			on vertically resolved aerosol radiative heating rates and DRE commensurate with the uncertainties in global mean at TOA and surface.								

a) Compute TOA SW aerosol direct radiative effect from observed aerosol and cloud properties (e.g., Oikawa et al 2018; Thorsen et al 2019) b) Estimate anthropogenic fraction of DRE using aerosol speciation

d) Characterize changes in atmospheric stability due to aerosol absorption Role of models - used to estimate impacts of aerosol absorption on atmospheric heating and aerosol-cloud radiative interactions.

Role of Sub-orbital – validation of satellite retrievals, aerosol optical models. New and Improved - Significant improvements in key aerosol variables

c) Estimate atmospheric heating due to aerosol absorption.

(extinction profiles, absorption, size), especially over land.

General approach

approaches as in O5 and O6.

A+CCP	Ια	CCP	Objectives	4	<u>မ</u>	ОДО	POR	Utility Score Land: 0.3	Geophysical Va	ariables (1 of 3)	Qualifiers
A+(ŭ	Objectives		0	ō)A	Ocean: 0.7	Minimum	Enhanced	Qualifiers
			O8 <u>Aerosol Indirect Effect</u>	٧		S	(√)	(0,4.6)	Aerosol Optical Depth		UV, VIS, NIR Column, PBL
			Minimum: Provide measurements to constrain process level understanding of aerosol-warm cloud	٧				(0,4.4)	Aerosol Fine Mode Optica	l Depth	UV, VIS Column, PBL
			interactions as a means to improve estimates of aerosol indirect radiative forcings.	٧				(4.6,0)	Aerosol Extinction (Total)		VIS & NIR Profile (PBL,above)
			Enhanced: Provide measurements to constrain	٧				(4,0)	Aerosol Non-spherical Ext	tinction Fraction	VIS & NIR Profile (PBL,above)
			process level understanding of interactions of aerosol with <i>cold and mixed-phase clouds</i> as a	٧			(√)	(0,4.6)	Aerosol Absorption Optica	al Depth	UV-VIS Column, PBL
			means to improve estimates of aerosol indirect radiative forcing.	٧				(0,4)	Aerosol Effective Radius		Column, PBL
				٧				5.0	Aerosol-Cloud Feature Ma	ask	
		Approach			٧		(√)	5.0	Cloud Liquid Water Path		
Gen	eral A	Appro	ach - Measure a suite of cloud and aerosol variables to	٧			(√)	4.8	Cloud Optical Depth		
			tes of aerosol indirect radiative forcing via process-level The observational strategy focuses on joint statistics	٧			(√)	5.0	Cloud Droplet Effective Ra	adius	
to c	haract	terize	physical processes and higher-level relationships between	٧	٧			4.8	Cloud Droplet Concentrat	ion	Cloud Layer
			precipitation, and radiation and comparisons with model nen et al 2016; Mulmenstad and Feingold 2018)	٧				4.2	Cloud Top Phase		
_	-		- LES simulations will be used to test and understand gs (Feingold et al. 2016)	٧			٧	4.5	Areal Cloud Fraction		
			ital - More extensive validation of key satellite retrievals is	٧	٧			5.0	Cloud radiative effects, SW	/ & LW	Broadband, all sky – clear sky TOA flux diff.
		, long-term surface observations combined with modeling will e process understanding (Sena et al 2016)		٧				5.0	Cloud Albedo		
Nev	v and	Impro	oved - Significant improvements of key aerosol and cloud	٧				4.0	Scattering ratio		Profile, VIS
		•	sol amount and size, cloud LWP and microphysics including et concentrations, precipitation quantification)		٧		(√)	4.2	Precipitation Rate		Profile, <2 mm/hr; near surface desired
											? 😈 🔓 31

A+CCP	l ∢	ССР	Objectives	<	 5	ОДО	POR	Utility Score Land: 0.3	Geophysical Va	ariables (2 of 3)	Qualifiers
A+	Ĺ	Ö			٥	ō	۵	Ocean: 0.7	Minimum	Enhanced	Quanners
			O8 <u>Aerosol Indirect Effect</u>	٧			(√)	4.3	Planetary Boundary Layer	r height	Lidar and reanalysis
			Minimum: Provide measurements to constrain process level understanding of aerosol-warm cloud				٧	3.6	Environmental Horizonta	al Wind	Profile
			interactions as a means to improve estimates of				٧	4.2	Environmental Vertical W	Vind	Profile
			aerosol indirect radiative forcings.					4.8	Environmental Humidity		Profile
			Enhanced: Provide measurements to constrain process level understanding of interactions					4.8	Environmental Temperat	ture	Profile
			of aerosol with <i>cold and mixed-phase clouds</i> as a	٧				(4.8,0)	Aerosol Number Conce	ntration	Profile (PBL,above)
			means to improve estimates of aerosol indirect radiative forcing.	٧				(4.8,0)	Aerosol Effective Radius	s	Profile(PBL,above)
				٧	٧			4.8	Cloud Droplet Concenti	ration	Layer
	Approach							3.0	Cloud Droplet Effective V	ariance	
Ger	eneral Approach - Measure a suite of cloud and aerosol variables to							4.3	Cloud Top Extinction		
			tes of aerosol indirect radiative forcing via process-level The observational strategy focuses on joint statistics	٧				4.7	Cloud Top Droplet Size		
to c	haract	terize	physical processes and higher-level relationships between	٧				5.0	Cloud Top Droplet Cond	centration	
			precipitation, and radiation and comparisons with model nen et al 2016; Mulmenstad and Feingold 2018)	٧	٧			4.7	Hydrometeor vertical fe	eature mask	Cloud base height
			- LES simulations will be used to test and understand		٧			4.0	In-Cloud Vertical Air Ve	locity	> 1 m/s , Profile
Rol	e of Su	ess couplings (Feingold et al. 2016) of Sub-orbital - More extensive validation of key satellite retrievals is ded, long-term surface observations combined with modeling will			٧		(v)	4.0	Precipitation Phase		Profile, near surface included/desired
enh	hance process understanding (Sena et al 2016)					٧	3.6	Diurnally Resolved Clou	ıd Cover		
vari	ables	(aeros	oved - Significant improvements of key aerosol and cloud sol amount and size, cloud LWP and microphysics including et concentrations, precipitation quantification)				٧	3.9	Surface Turbulent Fluxe	25	Sensible, Latent Land and Ocean
											? ♥ 🔂 32

A+CCP	٧	dDD	Objectives
			O8 <u>Aerosol Indirect Effect</u>
			Minimum: Provide measurements to constrain process level understanding of aerosol-warm cloud interactions as a means to improve estimates of aerosol indirect radiative forcings.
			Enhanced: Provide measurements to constrain process level understanding of interactions of aerosol with <i>cold and mixed-phase clouds</i> as a means to improve estimates of aerosol indirect radiative forcing.

General Approach - Measure a suite of cloud and aerosol variables to improve estimates of aerosol indirect radiative forcing via process-level understanding. The observational strategy focuses on joint statistics to characterize physical processes and higher-level relationships between cloud, aerosol, precipitation, and radiation and comparisons with model simulations. (Chen et al 2016; Mulmenstad and Feingold 2018)

Role of Models - LES simulations will be used to test and understand process couplings (Feingold et al. 2016)

Role of Sub-orbital - More extensive validation of key satellite retrievals is needed, long-term surface observations combined with modeling will enhance process understanding (Sena et al 2016)

New and Improved - Significant improvements of key aerosol and cloud variables (aerosol amount and size, cloud LWP and microphysics including profiling, droplet concentrations, precipitation quantification)

	٨	CCP	ООС	POR	Utility Score	Geophysical Var	iables (3 of 3)	Qualifiers
		δ	0	PC	Othicy Score	Minimum	Enhanced	Qualifiers
7	٧	٧			4.3	Ice Crystal Number Conc	entration	
	٧	٧			4.7	Ice Crystal Particle Size		
		٧			4.7	Cloud Top Droplet Effect	ive Radius	
		٧			4.7	Ice Water Path		
		٧			3.8	Cloud-top vertical velocit	ty	
		٧			3.9	Cloud-top horizontal win	ds	
	٧				3.2	Scattering ratio		Profile, UV
- [

	Cons	olidated	C-:		Desir	ed Capabili	ity			Examples of Observables	Enabled
Ge		cal Variables	Science Objectives	Range	Uncertainty		Scale	s		Examples of Observables Notes	Apps
	(1	of 18)	,	Nange	Officertainty	XY	z	Т	Swath	740103	71663
Minim	num	Enhanced		IMPORTANT	T: Desired Ca	pabilities and	Obser	vables	are preli	minary. Click <u>here</u> for additional informatio	n.
AABS.z	Aerosol	Absorption (Profile)	03,05,06, <u>07</u>	SSA: 0.6- 1.0	SSA: ±0.03	50 km	500 m	М	Nadir	UV-VIS	<u>2, 6, 12</u>
AAOD.ℓ	Aerosol	Absorption Optical Depth	<u>05, 06, 07</u>	SSA: 0.6-	SSA: ±0.04	(1,50) km	N/A		100 km	UV-VIS for column	2.4.6.42
AAOD.t	(Columr	ı,PBL)		1.0	SSA: ±0.02	(1,25) km	IN/A		TOO KIII	VIS for PBL	<u>2, 4, 6,12</u>
ACF	Areal Cl	oud fraction	<u>01, 04, 07,</u> 08	0.0 - 1.0	0.1	O1,O4,O7: 200m O8: 100 m*	N/A	I,	Nadir*	PoR: ABI, AHI, etc.; VIIRS * Lidar # Polarimeter or spectrometer	<u>4.</u>
						200 m#			100km#	#1 diamineter of spectrometer	
ASYM	Aerosol	Asymmetry Parameter	<u>07</u>	0.5-1.0	±0.02	1 km	N/A	ı	100 km	UV-VIS (scales listed are for column retrievals from polarimeter)	<u>3</u>
ACFM.z	§Aeroso (Profile)	I-Cloud Feature Mask	<u>O5,O6,O7,</u> <u>O8</u>	N/A	1%, for OD > 0.1	Foot-print	100 m	I	Nadir	Lidar, includes cloud top/base height; an aerosol detection accuracy of 90% is desired with a 1% false positive rate (i.e. aerosol layers contaminated with clouds); base height of opaque, non-precipitating clouds comes from HVFM	<u>1, 2, 3, 5, 6</u>

Desired Capability

§ Note: this is also an issue for polarimeter – not addressed yet

Consolidated

	Consc	olidated	6.:		Desired	Capab	ility			Evamples of Observables	Enabled
Geo	•	cal Variables	Science Objectives	Range	Uncertainty		Scale	s		Examples of Observables Notes	Apps
	(2 (of 18)		ge	oneer tame,	XY	Z	Т	Swath	110000	7.1010
Minim	ium	Enhanced		IMPORTANT	: Desired Ca	pabilitie	s and Ol	ser	vables a	re preliminary. Click <u>here</u> for additional information	on.
AEFR.z	Aerosol	Effective Radius (Profile)	03, 05, 06, 07, 08	0.1-0.5 μm	±20% for extinction > 0.05 km ⁻¹	50 km	500 m	Μ	Nadir	Total attenuated backscatter profiles at UV, mid-visible and near IR; Attenuated molecular backscatter at UV and mid-visible wavelength; Volume depolarization ratio UV, VIS, NIR	1, 2, 6, 7, 12, 13, 14
AER.	Aerosol Effective Radius (Column, PBL)		<u>07, 08</u>	0.1 to 1 μm	0.1 to 1 μm		N/A	I	100 km	polarized radiances, 1 km resolution desirable to resolve cloud adjacency effects	1, 2, 6, 12, 13, 14
			<u>05, 06, 07,</u>			5 km				Backscatter profiles at VIS, NIR	
AEXT.z Aeros Total		Extinction (Profile,	<u>08</u>	0.01–5 km ⁻¹	Max of (0.02 km ⁻¹ , ±20%)	1 km	30 m	1	Nadir	O3 match to O6, depth of trop., vicinity of convection; At least two wavelengths in order to retrieve AOT, Angstrom exponent, SSA, fine mode AOD, etc. for just the PBL portion of column. (±20% for retrieving fine mode AOD in PBL using the combination of measurements in VIS and NIR)	1, 2, 6, 12, 13, 14
										Backscatter profile at UV for O5	
AE2BR.z	Aerosol I Ratio (Pr	Extinction to Backscatter ofile)	<u>O5</u>	10-120 sr	±25%	50 km	500m	1	Nadir		N/A
AE2BR.ℓ	Agracal Estination to Deckaratter		05 06 07	10 100 -	. 250/	(1,50) km	N/A				N/A
AEZBK.		olumn,PBL)	<u>05, 06, 07</u>	10-120 sr	±25%	(1,25) km	N/A				N/A
											? 🖭 🔓 35

Consolidated Geophysical Variables			Science Objectives	Desired Capability						Everyoles of Observables	Cuabled.
				Range	Uncertainty	Scales				Examples of Observables Notes	Enabled Apps
(3 of 18)		XY				Z	Т	Swath	Notes	Дррз	
Minimum Enhanced		IMPORTANT: Desired Capabilities and Observables are preliminary. Click here for additional information.									
AEXTF.z	Aerosol Fine Mode Extinction Profile		<u>05, 06, 07</u>	0.01–5 km ⁻¹	Max of (0.02 km ⁻¹ , 20%)	50 km	500 m	-	Nadir	Total attenuated backscatter profiles at UV, mid-visible and near IR; Attenuated molecular backscatter at UV and mid-visible wavelength, Volume depolarization ratio UV, VIS, NIR	2, 6, 13, 14 (for inference of PM from AOD)
Alir.e	Aerosol Imaginary Index of Refraction (Column,PBL)		<u>05, 06,07</u>	0-0.1	±0.025	(1,50) km	N/A I	-			4, 6
AllK.						(1,25) km		1			(to identify smoke)
ANC.z	Aerosol Number Concentration Profile		<u>08</u>	10-1000 cm ⁻³	50%	50 km	500 m				<u>2, 3, 5, 13,14</u>
ANSPH.¢	Aerosol Non-spherical AOD Fraction (Column,PBL)		<u>05, 06, 07</u>	0-1	±10%	(1,50) km	N/A I	-	100 km	O7: column only	<u>4, 6</u>
ANOFH.			<u>O3</u>			(1,25) km		•			
ANSPH.z	Aerosol Non-spherical Extinction Fraction Profile		<u>O5</u>	0-1	±10%	50 km	500 m	I	Nadir	Two wavelengths mainly because this gives information about the size range of non-spherical particles such as smoke or dust)	<u>6</u>
ANOF II.Z			<u>03</u>								
AODF.ℓ	Aerosol Fine Mode Optical Depth (Column and PBL)		05, 06, 07, 08	0.03-4	±0.02±0.0 5*AOT	(1,50) km	- N/A I	1	100 km	O7: column only	<u>4, 5, 6, 12, 13, 14</u>
						(1,25) km					
											? 🔟 🔓 36

	Consolidated			Desired	Capak	oility			Everyles of Observables	Fuchled
Geo	physical Variables	Science Objectives	Range	Uncertainty -		Sca	les		Examples of Observables <i>Notes</i>	Enabled Apps
	(4 of 18)	,	Nange	Officertainty	XY	Z	T	Swath	7401.03	App3
Minimu	ım Enhanced		IMPORTAN	T : Desired Ca	apabiliti	es and C	bse	vables are	e preliminary. Click <u>here</u> for additional information	1.
AOD.e	Aerosol Optical Depth (Column,PBL)	03, <u>05, 06,</u> 07, <u>08</u>	0.03 - 4	±0.02±0.05*A OT	(1,5) km	N/A	-	100 km	Multi-angle radiance (UV,VIS), multi-angle DOLP - Multispectral radiance UV (aerosol absorption) & VIS (AOD, fine mode aerosol over water) - SWIR (surface properties and cirrus screening) Swath refers to column; Nadir for PBL 07: column only 08: PBL only	1, 3, 4, 5, 7 (12, 13, 14) for inference of PM from AOD)
ATHV	Aerosol Plume-Top Horizontal Velocity	<u>O5</u>		0.75 m s-1	500 m	NA	1-2 min	100 km	Derived from stereo camera pair	
ATVV	Aerosol Plume-Top Vertical Velocity	<u>O5</u>		1 m s-1	500 m	NA	1-2 min	100 km	Derived from stereo camera pair	
APM25	Aerosol PM2.5 Concentration (surface)	<u>O5</u>	20-150 μg/m³	+/-20-25%	5 km	N/A				<u>12, 13, 14</u>
ARIR.ℓ	Aerosol Real Index of Refraction (Column,PBL)	<u>05, 06,07</u>	1.33–1.7	±0.025	(1,50) km (1,25) km	N/A	ı			N/A
AVAV.z	Average vertical air velocity profile	O2, O3	2-20 m s ⁻¹	2 m s ⁻¹	3 km	250 m	1-2 min	Nadir	Derived from radar pair separated by 30-120 seconds	
										? 🛈 🔓 37

	Consolidated			Desired	l Capak	oility			Everyoles of Observables	Fuchled
Geo	ophysical Variables	Science Objectives	Danga	II a a a ata i a ta a		Sca	les		Examples of Observables <i>Notes</i>	Enabled Apps
	(6 of 18)	o bjecures	Range	Uncertainty	XY	Z	Т	Swath	Notes	Apps
Minim	um Enhanced		IMPORTANT	: Desired Cap	abilities	and Ob	serva	ables are p	reliminary. Click <u>here</u> for additional informatio	n.
BSS	Blowing surface snow detection	<u>04</u>	N/A	N/A	1km**	N/A*	I	Nadir	Backscatter lidar; *sfc-30 m range bin; **need more input on requirement.	<u>5</u>
					2 km		l,		This property would be derived from Level 2 microphysical products such as liquid water path/content, effective particle size, etc. The uncertainty in the albedo would be the aggregate uncertainty in the microphysical	
CA	Cloud albedo	<u>01, 08</u>	0.1-0.8	5%*	1 km	N/A	M	100 km	properties. *Relative change between states. Merge Radar and Lidar derived cloud boundaries to derive cloud vertical profiles. A Vis/NIR imager is needed for cloud and aerosol optical depth	<u>4.</u>
CAE	Cloud areal extent (High Cloud)	<u>O2</u>	> 4 km ²	For OD > 0.3 [IR]	2 km	N/A	I	Wide	PoR: ABI, AHI, etc. Defines area of upper-level cloud, not cloud fraction	<u>1, 2, 4,</u>
CDER	Cloud droplet effective radius	<u>O1, O6, O7,</u> <u>O8</u>	5-20 microns	For clouds with precip mode, 20%. For no precip mode, 10% for OD>2	1km	N/A	I	Nadir*, 100 km**	PoR: ABI, AHI, etc.; VIIRS **Bi- and mulitspectral techniques are sensitive to cloud effective radius. *Lidar ratio technique in fully attenuating clouds has the potential to effectively constrain cloud top cloud effective radius. Focused in-situ validation is needed to establish uncertainty.	

	Consolidated	Catalana		Desired	d Capa	bility			Evamples of Observables	Enabled
Ged	physical Variables	Science Objectives	Range	Uncertainty		Sca	les		Examples of Observables Notes	Apps
	(7 of 18)		- ruinge	oneer tame,	XY	Z	Т	Swath		
Minim	um Enhanced	I	MPORTANT:	Desired Cap	abilities	and Ob	serva	ables are pr	eliminary. Click <u>here</u> for additional information	٦.
СС	Convective classification	<u>03</u>	Isolated, organized, deep, shallow	NA	0.5 - 5 km*	N/A	Ι Ι, ΔΤ, R	100 km	VIS/IR Geostationary PoR + Radar profile *Phenomenon and sensor dependent Identify by org. (MCS, isolated conv, multi-cell etc.) and/or sub classes of intensity (weak, moderate, intense), depth (shallow, moderate, deep) etc.	<u>8, 9, 15</u>
ccc	Convective cloud cover	<u>02</u>	0 - 1	0.1	0.5-5 km*	N/A	I	100 km	PoR: ABI, AHI, etc., VIIRS; *Phenomenon and sensor dependent; convective classification at pixel scale, build cloud object, determine fraction of object area that is convective	
ccs	Convective core size	<u>O3</u>	1-5 km diameter	0.5-1 km	2 km	250 m	I, ∆T, R	≥20km	Radar reflectivity, Doppler, microwave TB Threshold(s), peakedness criteria; Doppler, dZ/dt	<u>5, 8, 9, 15</u>
		<u>08</u>		100%	2km				No single measurement constrains CDC. Requires synergy among observables that constrain various aspects of the droplet size distribution. ie. Lidar, reflectance, polarimetry, radar, etc. *may need to extend for continental clouds Current estimate for uncertainty is ~80% for pixel-	
CDC	Cloud droplet concentration	<u>01</u> , <u>08</u>	10-500* cm ⁻³	50%	1km	N/A	I	Nadir	scale retrievals using vis/NIR reflectance, only if stringent conditions are met (unobstructed, overcast, optically thick, favorable viewing geometry). Uncertainty unknown but larger in more challenging conditions Other studies indicate a factor of > 2 uncertainty regardless of remote sensing method.	<u>2, 3, 4, 5</u>
										? 😈 🔠 39

	Consolidated	Catalana		Desired	l Capal	oility			Evamples of Observables	Enabled
Geo	physical Variables	Science Objectives	Range	Uncertainty		Sca	les		Examples of Observables Notes	Apps
	(8 of 18)	. ,	Kange	Officertainty	XY	Z	Т	Swath	Notes	7,663
Minim	um Enhanced	I	MPORTANT:	Desired Capa	abilities	and Obs	serva	ables are p	oreliminary. Click <u>here</u> for additional information	า.
CLC	Cloud lifecycle categories	<u>O2</u>	≥ 3 phases	N/A	2 km	N/A	R	Wide	VIS/IR Geostationary PoR E.g, Cu, mature, decaying; alternatively, MCS approach	
	, ,	<u>O3</u>	'						such as Roca et al., 2017 and refs therein	
CLWP	Cloud liquid water path	<u>01, 08</u>	0.02-0.5 kg	0.02 for < 0.1 kg m ⁻²	500 m	N/A	1	Context	 Vis, NIR Reflectance Radar, Passive Microwave Submm Synergy of Reflectance, active and passive 	2, 3, 5, <i>T</i>
CLWF	Cloud liquid water patri	<u>01</u> , <u>00</u>	m ⁻²	50% for > 0.1 kg m ⁻²	200 m	IV/A	•	Only	microwave, passive microwave and submm Retrieval more difficult over land, submm has less sensitivity to surface than passive microwave	<u> </u>
		<u>01, 06, 07,</u>	>0.1	20%>10 Precip mode: 50%<10	500 m	N/A		Nadir	Vis/NIR Reflectance, Lidar, Radar	
COD	Cloud optical depth	<u>08</u>	7 0.1	No precip mode: 15%<10	200 m	1471		radii	Observables used depend strongly on objective. For O4, COD may be strongly modulated by frozen	<u>1, 3, 4, 5, 7</u>
		<u>O2</u>	0.1-50	100%	500 m	N/A	1	Nadir	hydrometeors and require some combination of radar, passive microwave, and reflectance.	
		<u>04</u>	>10	100%	200 m	N/A	1	Wide		
CP.z	Cloud phase profile	<u>O4</u>	Liquid, ice, mixed	10-25% FAR	2km	<250 m	Ι	Nadir	Polar. Back. Lidar; Radar dBZ profile	<u>2, 5, 7</u>
										? 🛈 🔓 40

	Consolidated Geophysical Variables (9 of 18)				Desired	Capal	oility			Everyples of Observables	Coobled
Ge			Science Objectives	Range	Uncertainty		Scal	es		Examples of Observables Notes	Enabled Apps
	(9	of 18)		Kange	Uncertainty	XY	Z	Т	Swath	Notes	Дррз
Minim	num	Enhanced		IMPORTAN	r : Desired Ca	pabilitie	s and O	bserva	bles are	preliminary. Click $\underline{\text{here}}$ for additional information	on.
						2km				Sensitivity of LW CRE of high ice clouds to changes in	
CRE LW	Cloud ra Longwa	adiative effects — ve	01,02,04, 08	0-200 Wm ⁻²	±5-10 Wm ⁻²	1km		sno		IWP. NB This uncertainty requirement is coarser than the requirement for TICFIFRE science.	<u>4, 5</u>
	Cloud radiative effects —					1km	N/A TOA	nstantaneous	>50 km	TOA, uncertainty based on 30-60 degree solar zenith & assumes a difference between two 'states. Derived from model calculations.	
CRE SW	Cloud radiative effects — Shortwave		O1,O2,O4, O8	0-1000 Wm ⁻²	±20-40 Wm ⁻²	0.5k m		ч		While 'X-Y resolution is <20km the quoted uncertainty can be demonstrably met according to analysis @ 20km footprint (SSF equivalent) . Flux requirement wrt instantaneous solar (could normalize to 340 Wm-2) . We might do an interim SSF-like product for eval.	<u>5</u>
CTDC	Cloud to	op droplet concentration	<u>08</u>	10-500 cm- 1	100%	2 km	N/A	I	Nadir	No single measurement constrains CTDC. Requires synergy among observables that constrain various aspects of the droplet size distribution. ie. Lidar, reflectance, polarimetry, radar, etc.	<u>5</u>
					10%	500 m	N/A	I	100 km	Vis/NIR reflectance from polarimeter Daytime retrievals	
CTDS	Cloud to	op droplet size	<u>01, 08</u>	5-20 microns	30%	2km	N/A	ı	Nadir	Lidar, nighttime retrievals Lidar ratio derived from integrated depol and integrated attenuate backscatter can constrain cloud top effective radius. Accuracy depends on accuracy of derived lidar ratio.	<u>5</u>

	Consolidated			Desired	l Capal	oility			Everyles of Observables	Enabled
Geo	ophysical Variables	Science Objectives	Range	Uncertainty		Sca	les		Examples of Observables Notes	Apps
	(9 of 18)	,	Kange	Officertainty	XY	Z	Т	Swath	Notes	7.663
Minim	um Enhanced		IMPORTANT	r : Desired Ca	pabilitie	s and O	bserva	bles are	preliminary. Click <u>here</u> for additional information	on.
CTDV	Cloud top droplet eff variance	<u>01, 08</u>	0- 2	0.05±50%	500m	N/A	ı	100 km	Polarimeter (see Mishchenko 2004)	
CTE	Cloud top extinction	<u>08</u>	1-50 km-1	100%	2km	N/A	I	Nadir	Lidar Vis/NIR Reflectance This quantity can be related to the rate at which the lidar signal decays near cloud top. Accuracy depends cloud top structure and accuracy of attenuated backscatter signfal near cloud top.	<u>1, 3, 4, 5, 7</u>
CTHV	Cloud-top horizontal velocity	O1, O8		0.75 m s-1	500 m	NA	1-2 min	100 km	Derived from stereo camera pair	
		<u>O1</u> , <u>O8</u>	Liquid,		200 m		ı	Nadi r	Polarimetry, lidar depolarization, radar depolarization	
СТР	Cloud top phase		solid, mixed	N/A	3 km	~1 OD			ratio, SWNIR reflectance Expect fine resolution from lidar or imager	
		<u>03</u>			1 km		I,∆T,R	≥20k m		
	Cloud geometric-top				2 km		ı	Nadi r	Thermal IR	
СТТ	temperature (Kelvins)	<u>02, 03, 04</u>	>170	0.5	1 km	N/A	I,∆T,R	≥20k m	Thermal IR needed. POR may not provide sufficient resolution for this objective.	<u>1, 3, 5, 7</u>
CTVV	Cloud-top vertical velocity	01, 08		1 m s-1	500 m	NA	1-2 min	100 km	Derived from stereo camera pair	
]										? 🛈 🔓 42

	Cons	olidated			Desire	ed Capa	ability			Everyoles of Observables	Frablad
Ge		cal Variables	Science Objectives	Range	Uncontaintu		Sc	cales		Examples of Observables Notes	Enabled Apps
	(10	of 18)	02,000.00	Kange	Uncertainty	XY	Z	Т	Swath	Notes	Apps
Minin	num	Enhanced		IMPORTANT	: Desired Ca	pabilities	s and Ol	oserval	oles are pre	liminary. Click <u>here</u> for additional information	on.
DARE,	LW aer	rosol rad. Effect				1km 50x5	TOA	Inst. &		O7-WG report, the \pm 1.2 W/m2 is a global,	
SW&L W			07	-10-30% incident irradiance	±1.2 Wm ⁻²	0 mini gran	& SFC	integrat ed	>50km	annual mean	
DDCC			<u>O2</u> , <u>O3</u> ,	0.05-1.00	5%	2 km	N/A	I	Wide	Geostationary PoR (IR)	
DRCC	Diurnally resolved cloud cover		<u>01</u> , <u>08</u>	0.05-1.00	5%	2 km	N/A	1	Wide	Context only	<u>4,</u>
DRCH	CH Diurnally resolved cloud top height		<u>02, 03,</u>	1-20 km	1000m	2	N/A	ı	Wide	Geostationary PoR (IR) PoR IR estimates boost uncertainty	
EHW.z	Environmental horizontal wind		<u>O1</u> , <u>O2</u> , <u>O3</u> , <u>O4</u> , <u>O6</u> , <u>O8</u>	-80 - 80 m/s	<2 m/s	<25 km	<1 km	ı	Global	Reanalysis Expectation that XY and Z resolution will be	<u>4,</u>
	profile		<u>05, 06</u>	-80 - 80 m/s	<2 m/s	<25 km	<1 km	I,R	Global	closer to 10 km, 0.5 km. *Enhanced for aerosol?	<u></u>
			<u>01, 02, 03,</u>		2-0/	<25 km		I		Reanalysis, limb sounder	
EH.z	Environn	mental humidity profile	<u>04, 05, 06</u> <u>07, 08</u>	0 - 100%	25%	120 KIII	<1 km	I,R	Global	Expectation that XY and Z resolution will be closer to 10 km, 0.5 km.	

	Consolidated	6.1		Desire	d Capa	bility			Evamples of Observables	Enabled
Geo	physical Variables	Science Objectives	Range	Uncertainty		Sc	ales		Examples of Observables Notes	Apps
	(11 of 18)	,	Nange	Officertainty	XY	Z	Т	Swath	Notes	ДРР
Minim	um Enhanced		IMPORTANT	: Desired Ca	pabilitie	s and O	bserv	ables are p	oreliminary. Click <u>here</u> for additional information	n.
ET.z	Environmental temperature profile	01, 02, 03, 04, 05, 06 07, 08	-85°C – 50°C	1.5°C	<25 km	<25 km	I I,R	Global	Reanalysis Expectation that XY and Z resolution will be closer to 10 km, 0.5 km.	N/A
EVW.z	Environmental vertical wind profile	<u>O1</u> , <u>O3, O6,</u> <u>O8</u>	-50 – 50 cm/s	2 cm/s	<25 km	<25 km	I	Global	Reanalysis Expectation that XY and Z resolution will be closer to	N/A
	profile	<u>O5, O6</u>	-50 – 50 cm/s	2 cm/s	<25 km	<25 km	I,R	Global	10 km, 0.5 km.	
FOAA	Full Attenuation Altitude (lidar backscatter reduced to x)	<u>O1</u> , <u>O2</u> , O3, <u>O4</u>	0-20 km	30 m	100 m	NA	1	Nadir	VIS; long-term stability required (±10m), implications for telescope FOV, laser footprint, sensor response; consistency with CALIOP/EarthCare. Can be derived from ACFM.	
									UV	
HMW	Height of max vertical motion	O2, O3	5-15 km	2 km	10 km	NA	1-2 min	>100 km	Derived from passive microwave radiometer pair	
HVFM	Hydrometeor vertical	<u>01, 02, 03,</u> <u>04, 05</u>	Cloud top: 0.5-20km	Cloud top (CT): 100m	CT: 1 km	CT: 100- 200 m	Ī	Nadir	Lidar, A-Band, w-band Radar in non-precipitating conditions (liquid clouds), Radar for ice-layers, A-Band Spectroscopy, stereo imager lidar (necessary to define cloud top height) can be	4 5 7
∏VFWI	feature mask	<u>01, 08</u>	Cloud base: >250m	Cloud base (CB): 250m	CB: 2 km	250 m	I	Nadir	combined with A-band spectroscopy to define cloud base height in ideal conditions (homogenous, moderate optical depth) Radar accuracy affected by sensitivity threshold	<u>1, 5, 7</u>
										? 🛈 🔓 44

	Cons	olidated			Desired	l Capal	oility			Everyples of Observables	Frablad
Geo		cal Variables	Science Objectives	Range	Uncertainty		Sca	les		Examples of Observables Notes	Enabled Apps
	(12	of 18)		Natige	Officertainty	XY	Z	Т	Swath	740123	Apps
Minim	ıum	Enhanced		IMPORTANT	: Desired Ca _l	pabilitie	s and Ol	oserv	ables are	preliminary. Click <u>here</u> for additional information	n.
ICNC	Ice crys (per lite	stal number concentration r)	<u>O2, O8</u>	0.1-1000	100%	2km	1 km	I	Nadir	Lidar Scattered sunlight Radar Nothing directly constrains this moment of the DSD (0'th). Vis/NIR and Lidar are sensitive to 2nd moment. Additional indepedent information is necessary (I.e. radar)	<u>3, 5,</u>
ICPS	Ice crystal particle size		<u>02</u> , <u>08</u>	O2: 10- 60 O8: 100- 1000 (microns)	O2: 50% O8: 100%	2km	1 km	I	Nadir		<u>1, 3, 5,</u>
IWC.z	Ice wate	er content profile	<u>02</u>	10 ⁻⁵ - 10 g/m ³	100%	2km	250 m	I, ∆T, R	Nadir	Multi-freq. radar constrained by high frequency and/or sub-mm radiometer; combine with lidar near top.	
IWP	Ice wate	er path (kg m-2)	<u>O2, O3, O4,</u> <u>O8</u>	O2: 0.01-0.75 kg/m ² O3: 0.5-10	O2, O3, O4: 100%	O2, O3: 5 km O4: 2 km	NA	I	Nadir	Radar-only would provide estimate of IWP for values in excess of 0.25 kg m-2. Radar-Lidar algorithms would provide best results in single phase (ice) layers; passive microwave > 85 GHz; submm has high sensitivity to ice	<u>1, 3, 5, 7</u>
				O4: 0.05-0.2		1 km (O3)		I, ΔT, R	≥20km	Uncertainty would be significantly reduced with some estimate of ice bulk density.	

	Consc	olidated	6.:		Desired	Capab	ility			Evamples of Observables	Enabled
Ge		cal Variables	Science Objectives	Range	Uncertainty		Scale	S		Examples of Observables <i>Notes</i>	Apps
	(13	of 18)		Mange	Officertainty	XY	Z	T	Swath	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , p p 3
Minim	ıum	Enhanced		IMPORTANT	: Desired Ca _l	pabilitie	s and Ob	ser	vables a	re preliminary. Click <u>here</u> for additional information	n.
			<u>02</u> , <u>03</u>	O2: 0.5-3 m/s (above 5 km) O3: 2-25 m/s (above 5 km)	O2: 0.5 m/s O3: max (2 m/s, 30%)	3 km	O2: N/A O3: 250m	_	Nadi r	O2 minimum is profile in high clouds (above 5 km). Enhanced is profile in deep convection. Doppler shifted radial velocity, time differenced reflectivity (ΔΖ~2 dBZ, 90sec, dZ/dh @120 s); Altitudes >	
IVAV.z	In-cloud Vertical Air velocity profile		<u>O1, O2, O3,</u> <u>O4, O6, O8</u>	O2, O3, O4, O6 (full profile): 2-50 m/s O8: 1-6 m/s	O2,O3,O4, O6: max (2 m/s, 30%) O1,O8: 0.5 m/s	1 km	250m	I,∆T ,R	≥10 km	5 km (~melting level in tropics) O3: Δx resolution of 3 km marginal for convection; capture mean level at/or above maximum mass flux. Enhanced will enable any subset, or all, of improved resolution, limited scanning, sequential sampling, or diurnal sampling). Radar ΔT when Doppler not available	<u>1, 2, 5, 7</u>
LH.z	Latent h	eating profile	<u>03</u>	-50–100 K/hr	30%	≤3 km	250 m	I, ΔT, R	Nadir	Radar reflectivity profile, C/S type, Doppler velocity, time differenced reflectivity (ΔΖ~2 dBZ, 90sec) Range represents Instantaneous convective observation; add velocity constraint; Highly derived from combination of sources	<u>1, 3, 5, 7</u>

	Cons	olidated			Desired	Capab	ility			Examples of Observables Enabled
Ge	•	cal Variables	Science Objectives	Range	Uncertainty		Scale	es		Examples of Observables Enabled Notes Apps
	(13	of 18)	,	Nange	Officertainty	XY	Z	Т	Swath	Apps
Minim	ıum	Enhanced		IMPORTANT	: Desired Ca	pabilitie	s and Ol	bser	vables a	re preliminary. Click <u>here</u> for additional information.
Light	Lightnin	g	<u>03</u>	0-60 fl/min	< 10 km	N/A	I, ΔT, R	Wide	PoR; E.g., group/flash rates and location, flash area, length, optical energy, multiplicity, polarity Geo, LEO, airborne, ground-based; uncertainties defined by existing PoR measurement requirements	
LWC.z	Liquid profile	water content	O4							
MMW	Magni motio	tude of max vertical n	O2, O3	-10 to 25	2 m/s	10 km	NA	1-2 min		Derived from passive microwave radiometer pair
PAF	Particl	e asymmetry factor	<u>02</u>	0.7-0.95	5%	2km	1 km	I	Nadir	Uncertainty based on Vogelmann and Ackerman, JAS 1995

	Consolid	ated	•		Desired	d Capa	bility			Everyples of Observables	Cuchlod
Geo	physical		Science Objectives	Pango	Uncertainty		Sca	les		Examples of Observables Notes	Enabled Apps
	(14 of 1	18)	0.0,000.00	Range	Oncertainty	XY	Z	Т	Swath	Notes	Дррз
Minim	um	Enhanced		IMPORTANT	: Desired Ca	pabilitie	s and Ol	oserv	ables are	preliminary. Click <u>here</u> for additional information	n.
PS	Particle shar	pe (aspect ratio,	<u>04</u>	NV	NV	NV	NV	N V	NV	From space, polarized high frequency or sub-mm channels on passive MW radiometer. Possible target for suborbital measurements. Multi-angle polarimeter or polarimetric lidar	
PBLH	Planetary bo	oundary layer	<u>O1</u> , <u>O5, O6</u> <u>O8</u>	2-5 km	200 m	5 km	N/A	I	Nadir	Lidar, maybe PoR (radio occultation)	<u>2, 4, 5, 13, 14</u>
				0		3 km		ı	Nadir	Radar reflectivity profile	
PD	Precipitation (stratiform/c	n discrimination convective)	<u>03</u>	Convective, stratiform, other	N/A	1 km	NA	I, ∆T, R	≥20km	3 types- C, S, Other. Better with multiple radar frequencies (E) and vertically- resolved Doppler vertical motion	<u>1, 5</u>
PPD.z	Precipitation density profi	n (ice) particle ile	<u>O4</u>	0.02-0.9	0.2	2 km	250 m	1	Nadir	Dual-frequency radar, passive microwave radiometer	<u>5</u>
PPS.z	Precipitation profile	n particle size	<u>03</u> , <u>04</u>	0.5 –4.0 mm	0.5 mm	≤ 3 km	250 m	I, ΔT, R	Nadir	Radar reflectivity, attenuation, dual-frequency ratio (DFR), combined TB and reflectivity/DFR. Bulk median mass diameter D_m * typically liquid equivalent D_m is < 3 mm.	<u>5</u>
					N/A	3 km	250 m	ı	Nadir	Z profile, bright band, Doppler velocity profile, LDR; e.g., Ka > \sim -15 dB), differential reflectivity Δ Z \sim 2dBZ ,	
PP.z	Precipitation	n phase profile	<u>O1</u> , <u>O2</u> , <u>O3</u> , <u>O4</u> ,	Liquid, Solid, Mixed	N/A	1 km	125 m	I, ∆T, R	≥250km	dual-freq. ratio, polarimetric VIS backscatter Separation of stratiform liquid and frozen most straight forward. Enhanced would include approach for convective clouds, mixed phase, and the associated profile. Melting layer ID is implicit.	<u>1, 5, 7</u>
											? 🛈 🔓 48

	Consolidated	6.:		Desired	d Capal	bility			Examples of Observables Enabled Notes Apps		
Geop	hysical Variables	Science Objectives	Range	Uncertainty		Sca	les		•		
	(15 of 18)		Kange	Officertainty	XY	Z	Т	Swath	Notes	Дррз	
Minimu	m Enhanced		IMPORTANT	: Desired Ca	pabilitie	s and O	bser	vables are	preliminary. Click <u>here</u> for additional information	on.	
PR.z	Precipitation rate profile	<u>O1, O3, O4,</u> <u>O6</u>	O1: 0.1 - 2 mm/hr O3:2 - 50 mm/hr O4:.01-10 mm/hr O6: 0.1 - 2mm/hr	O1, O3, O6 <100% O4: 200%	3 km	250 m	1	Nadir	Radar reflectivity; µwave radiances, submm radiances	<u>1, 5, 7</u>	
		<u>O2,</u> O3,O4, <u>O6</u>	2-100 mm/hr	<100%	1 km	125 m	I, ΔT, R	≥250km	Lower freq radar needed in enhanced for intense rains; Includes near surface precipitation estimate.	32,2	
		<u>06</u>	0.1-2 mm/hr	100% below 1 mm/hr, 50% above	≤ 25 km	N/A	I, ∆T, R	>500 km	Scanning passive µwave, >85 GHz, Submm	4.5.5	
PR2D	Precipitation rate, 2D @surface	<u>03</u> , <u>04</u>	(O3): 0.5-50 mm/hr (O4): 0.01-10 mm/hr	O3: < 50% @1 mm/hr; < 25% @>10 mm/hr O4: 200%	≤ 25 km	N/A	I, ΔT, R	>500 km	Contributes to horizontal mapping of precip.; Applications desires footprint of 10 km or less.	1, 5, 7 8, 9, 10, 11	
RCIWP	Rate of change of IWP	O2, O3	0.25-5 kg m ⁻² min ⁻¹	0.25 kg m ⁻ ² min ⁻¹	5 km	NA	I-Z min	>100 km	Derived from passive microwave radiometer pair		

	Consolidated	6.1		Desired	Capal	bility		Examples of Observables Notes Finabled Apps	Enabled	
Ged	ophysical Variables	Science Objectives	Range	Uncertainty		Sca	les		•	
	(16 of 18)		Kunge	Officertainty	XY	Z	Т	Swath	110.00	7.660
Minim	um Enhanced		IMPORTAN	T: Desired Ca	apabiliti	es and C	bserv	ables are	e preliminary. Click <u>here</u> for additional information	ı.
RadH.z	Radiative heating rate profile, SW & LW (cloud)	<u>02</u>	-3.0 K day ⁻¹ to 1 K day ⁻¹ for longwave and 0 K day ⁻¹ to 2 K day ⁻¹ for shortwave	Longwave: 0.9 Kday ⁻¹ for boundary layer clouds, 0.25 K day ⁻¹ for upper tropospher ic clouds. Shortwave : 0.35 Kday ⁻¹ for both clouds.	Zonal	1 km	М	Aggregated over geographic regions	This GV would be calculated from level 2 microphysical retrievals and the uncertainty would be tied to the uncertainty of the microphysical retrievals, the radiative parameterizations (I.e. conversion of microphysics to radiative properties) and the accuracy of the PORderived thermodynamic profiles. The range is for instantaneous heating rate computed with 137 layers in the atmosphere averaged over a month and over 1 degree zone The uncertainty is for zonal monthly mean hating rate 137 layers seems extreme on the time and space scales required. Zonal seems too coarse. Thinking 2.5x2.5 is more in line with capabilities based on CloudSat/CALIPSO	4
	Radiative heating rate profile, SW (aerosol)				1 km	250 m	inst	>50k m		
SA	Surface albedo	<u>07</u>	0.1-0.8	NV	2 km	N/A	NV	NV	PoR	12, 13, 14 (for inference of PM from AOD)
SR.z	Scattering ratio profile	<u>O1, O2, O3,</u> <u>O4, O5</u>	0-80	0.05	100	240	NA	Nadi	VIS; SR is required in the stratosphere for calibration 30m sampling resolution, 240m variable resolution	
		<u>04, 05</u>			m	m		r	UV	
										? 😈 🔓 50

	Consolidated			Desired	l Capal	oility		Examples of Observables Enabled Apps						
Geo	physical Variables	Science Objectives	Range	Uncertainty		Sca	les		•					
	(17 of 18)		Natige	Officertainty	XY	Z	Т	Swath	Notes	Дррз				
Minimu	ım Enhanced	ı	MPORTANT:	Desired Capa	abilities	and Obs	serva	ables are p	oreliminary. Click <u>here</u> for additional information.					
SCL	Surface classification	<u>04</u>	> 10 classes	N/A	<0.25 °	N/A	М	Global	E.g., GLDAS2 Land surface (MODIS), POR?					
JUL	Surface classification	<u>O3</u>	> 10 Classes	IV/A	70.25	IN/A	141	Global	Land cover (water, vegetation, desert, snow etc.)					
SEL	Surface elevation	<u>04</u>	- 0.5 - 9 km	< 100 m	4 1 long	<100 m	NI / A	Global	PoR topography database (E.g., SRTM)					
SEL	Surface elevation	<u>O3</u>	- 0.5 - 9 km	< 100 m	< i km	<100 m	IN/A	Global	Identify orography					
SRB	Surface radiation budget	<u>04</u>	0-500 Wm ⁻²	2% LW, 7% SW	1 x 1 deg	N/A	М	Nadir	This GV would be calculated from level 2 microphysical retrievals and the uncertainty would be tied to the uncertianty of the microphysical retrievals, the radiative parameterizations (I.e. conversion of microphysics to radiative properties) and the accuracy of the POR-derived thermodynamic profiles. Includes surface albedo, emissivity; cloud/precipitation radiative properties Monthly mean, skin temperature may be an issue, as well as low cloud microphysics.					
			0 - 1500						1-6 hour PoR analyses (e.g.,MERRA-X, ERA-X, GLDAS, SeaFlux-HR etc.)					
STF	Surface turbulent fluxes	<u>01</u> , <u>03</u>	W/m² (Latent) -300-1500 W/m² (Sensible)	Ocean: < 20% Land: < 30%	< 25 km	N/A	I, R	Global	LH/S heat fluxes- ranges include documented extremes over Land/ocean. New NASA-funded activities (Seaflux-HR) may help.					
										? 🖭 🔓 51				

	Consolidated			Desired	d Capa	bility		Examples of Observables Enabled Notes Apps		
Geo	physical Variables	Science Objectives	Pango	Uncertainty		Sca	les		Notes Apps	
	(18 of 18)		Range	Officertainty	XY	Z	Т	Swath	Notes	Дррз
Minim	um Enhanced		IMPORTANT	: Desired Ca	pabilitie	s and O	bserv	ables are	preliminary. Click <u>here</u> for additional information.	
STP	Surface type	<u>O4</u> <u>O3</u>	Ocean, land, coast	N/A	1 km	N/A	N/A	Global	Numerous PoR high resolution land/water masks Land/water surface boundaries	
		<u>04</u>	0.01-0.2 kg m ⁻²	100% over water	2 km	N/A	I	Context only	Vis, NIR Reflectance Radar, Passive Microwave Submm	
TLWP	Total liquid water path	<u>01, 03</u>	0.02 - 60 kg/m²	50%	1 km	N/A	I, ΔT, R	Nadir	Synergy of Reflectance, active and passive microwave Synergy of passive microwave and submm See Cloud LWP above; Extends IWP to liquid part of the column (full column precip+cloud), combination of microwave and submm reduces uncertainty	<u>1, 2, 3, 5,</u> <u>7</u>
VCF	Volumetric cloud fraction	<u>O1, O4</u>	0-1.	20%	100 km²	250- 500m	I	≥20km	Scanning radar, W or Ka band	<u>4, 5, 7</u>
VIIMF	Vertically Integrated Ice Mass Flux	02, 03	0.1–20 g m ⁻² s ⁻¹	100% if < 10 50% if > 10 g m ⁻² s ⁻¹	6 km	NA	1-2 min	>100 km	Derived from passive microwave radiometer pair	

	Consc	olidated	Coorbusisel	Desir	ed Ca	apak	oilitie	es			Instrument	Desired Mission	
		rvables	Geophysical Variables	o o	Uncer-		Resolut	ion		ude	Class and	Capabilities	
	(1	of 6)		Range	tainty	Δх	Δz	Swa	ath	Altitude	Notes		
Min.	Enh.	Channels/Angle s	CTH, CBH, CDC, CDER, CLWP CP 7 CVS IWP CP 7	her	e for additional informati	on.							
				< -25 dBZ @ 5000m								Polar orbit.	
			CTH, CBH, CDC, CDER, CLWP, CP.z, CVS, IWP, PD, PP.z, PR.z,TLWP	< -20 dBZ @ 1000 m			250 m					Altitude < ~550 km. Equatorial crossing time between 0100-0600 local	
Refl.λ		W Dand	, r , r , r , r	< -5 dBZ @ 250 m	1.5	1.5	125 m	Nadir	20 km	footprint recommende	Radar oversampled at ½ footprint recommended.	standard time.	
Radar Reflectiv	vity	W Band		< -35 dBZ @ 5000m	dBZ	km	500 m	Na	20	footprint recommer σ ₀ reference valu σ ₀ (land)=?		Inclined orbit in addition to	
			ICNC, ICPS, CTDC, PPD.z, PPS.z, VCF	< -30 dBZ @ 1000 m			250 m				, ,	polar. Altitude < ~400 km. Inclination of 65° or smaller.	
				< -15 dBZ @ 150 m			125 m					ssaon or oo or ornanor.	

	Consc	olidated	Coophysical	Des	ired (Capa	bilit	ies			Instrument	Desired Mission
		rvables	Geophysical Variables	a)	Uncer-		Resolut	ion		nde	Class and	Capabilities
	(1	of 6)		Range	tainty	Δх	Δz	esolution g γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ		Notes		
Min.	Enh.	Channels/Angle s		IMPORTANT: Desire	250	here for	additional informati	on.				
				< 10 dBZ @ 5000m								Polar orbit.
			CP.z, CTH, CVS, IWP, PD, PP.z, PR.z, TLWP, CC	< 12 dBZ @ 1000 m			250 m				Padar ayaraamalad	Altitude < ~550 km. Equatorial crossing time between 0100-0600 local
		Ka Band		< 20 dBZ @ 250 m	1.5	3	125 m			– 20 km	Radar oversampled at ½ footprint recommended.	standard time.
R	efl.λ adar ectivity	Na Dallu		< 0 dBZ @ 5000 m	dBZ	km	500 m	Nadir	20 km	500 m -	σ_0 reference values: σ_0 (land)=?	
Keli	ectivity		CCS, PPD.z. PPS.z, VCF	< 2 dBZ @ 1000 m			250 m	_	2		o₀ (ocean)=12 dB	Inclined orbit. Altitude < ~400 km. Inclination of 65° or smaller.
				< 10 dBZ @ 250m			125 m					
		Ku or X	CP.z, CVS, CC, CCS, IWP, PD, PP.z, PPD.z, PPS.z, PR.z, TLWP	>10 dBZ	1.5 dBZ	3 km	500 m			0.5 - 10 km	Radar oversampled at ½ footprint recommended.	Preferred in inclined, but acceptable in polar

			Geophysical	[Desired	l Cap	oabil	lities		Instrument	Desired Mission	
Cons		Observables	Variables	Range	Uncertainty		Resolut	ion	tude	Class		
	(1 of	(6)		Rar	Oncertainty	Δχ Δz		Swath	Altit		·	
Minimum	Enhanced	Channels/Angles	IMPO	IMPORTANT: Desired C 2.z, VAV.z z, PPS.z, SVM.z	: Desired Ca	pabilitie	es are pi	reliminary.	Click	k <u>here</u> for additional infor	mation.	
		i vv Band	CC, PD, PP.z, VAV.z LH.z, PPD.z, PPS.z, SVM.z		<0.5 ms ⁻¹						Polar orbit. Altitude < ~550 km.	
Doplr.λz Radar Dopple	er Velocity	Ka Band	CC, PD, PP.z, VAV.z	±25 m s ⁻¹	<3 m s ⁻¹	capal	esired pilities ectivity	Nadir	es for reflectivity	Radar oversampled at ½ footprint recommended	Equatorial crossing time between 0100-0600 local standard time. Doppler optional if in inclined orbit?	
		I KIIOTX	CC, LH.z, PD, PP.z, PPD.z, PPS.z, SVM.z,VAV.z	±50 m s ⁻¹	<3 m s ⁻¹	ioi reii	Couvily		See ranges		Inclined orbit. Altitude < ~400 km. Inclination of 65° or smaller. Doppler at W and either Ka or Ku, or all three.	

			Geophysical		Desire	d Ca	apab	ilit	ies		Instrument	Desired Mission	
Cons		Observables	Variables	Range	Uncertainty		Resolut	tion		Altitude	Class	Capabilities	
	(2 of	0)		Rar	Officertainty	Δх	Δz	Sw	ath	Altit			
Minimum	Enhanced	Channels/Angles	IM	IPORTAN	T : Desired (Capabili	ties are	preli	minar	y. Click	nere for additional inform	nation.	
		W Band	IWP	100- 280 K	1.5 K	2 km	-	Nadir					
		w Ballu	IVVF	50- 280 K	0.5 K	1 km	-	į	20 km	.0 km		Radar oversampled at ½	
Tb.λ		Ka Band	IWP, TLWP	100- 280 K	1.5 K	3 k m	-	Na	20		footprint recommended		
Brightness Te	emperature	Na Dallu	IVVF, ILVVF	50- 280 K	0.5 K	1 km	ı						
		> 85 GHz, submm	TLWP, IWP, PR2D	80- 300 K	1–2 K	< 25 km	ı		100 m		Passive microwave radiometer	~166, 183, 325 GHz preferred for snowfall	
		<85 GHz	TLWP, PR2D	100- 300 K	1–2 K	< 25 km	ı		100 m		Passive microwave radiometer		
Depol.λz		W Band	CP.z, PD, PP.z, PPD.z	-35 – 0 dB	2 dB					250 m		2nd transmit, or, just second	
Linear Depoli Ratio	arizarion	Ka Band	CP.z, PD, PP.z, PPD.z	-30 - 0 dB	2 dB	1 km	125 m	20	km	20 km	Radar	receive channel for orthogonal polarization (slant 45 or linear basis)	
				•									

			Coorbanical		De	sired	Capal	oilities		Instrument	Desired Mission
Consolid	dated Obse	rvables	Geophysical Variables	Range	Uncerta		Resolut	ion	Altitude	Class	Capabilities
	(3 of 6)			Rar	inty	Δх	Δz	Swath	Altit	Class	Capabilities
Minimum	Enhanced	Channels/ Angles	IMPORTAI	NT : Des	ired Cap	oabilitie	s are pr	eliminary.	Click <u>her</u>	<u>e</u> for additional inform	nation.
TAtbsCo.λz Molecular+Particula polarized Backscati			AOD.¢, AODF.¢, AAOD.¢,AEXT.z, AABS.z,AEXTF.z,AE.I,AE.z,				30 m				
(Superseded by HS RayAtbs.λz, MieA' MieAtbsCo.λz me available)	tbsCo.λz and	VIS NIR	ACFM.z,ANC.¢,AE2BR,AE2BR.¢, AEFR.I,AEFR.z,ARIR.¢,AIIR.¢, ANSPH,ANSPH.z,APM2.5,AVE, BSS,CA,CBH,COD,CTDC,CTDS, CTE,CTH,ICNC,IWP,PANC,PBLH			100 m	10 m	100 m	-2 to 42 km	Backscatter Lidar	Note: ∆x & swath meant to imply continuous along-track coverage;
TAtbsX.λz Molecular+Particula Cross-polarized Ba (Superseded by HS RayAtbs.λz, MieA MieAtbsCo.λz me available)	ckscatter Profiles SRL enhanced tbsCo.\(\lambda\z\) and	VIS NIR	Same as for TAtbsCo.λz							Backscatter Lidar	Swath means receiver footprint diameter View angle: 0.3 to 5 degrees
Rad.λ Radiances		VIS NIR				100 m 100 m Lidar		Lidar	from lidar background monitor		
		UV									

nt Desired Mission	Instrument		ilities	Capak	sired	De		Coophysical			
Capabilities	Class	tude	ion	Resolut		Uncerta	ıge	Geophysical Variables	rvables	dated Obse	Consoli
Capabilities	G .033	Alti	Swath	inty Δx Δz Swath				(4 of 6)			
nformation.	<u>re</u> for additional inform	AOD.¢, AODF.¢, AAOD.¢, AEXT.z, AABS.z, AEXTF.z,AE.¢ AE.z,ACFM.z,ANC.I,AE2BR, AF2PD (AFED a AFED a APD 6						Channels/ Angles	Enhanced	Minimum	
Polar Orbit (O1, O4, O7, O9); Note: ∆x & swath meant to imply continuous along-track coverage; Swath means receiver footpri	HSRL Lidar	-2 to 42 km	100 m	10 -30 m	100 m			AABS.z, AEXTF.z,AE.ℓ	UV VIS	h Backscatter	RayAtbs.λz Attenuated Rayleig Profiles
diameter; View angle: 0.3 to 5 degrees	HSRL Lidar	-2 to 42 km	100 m	10 – 30 m	100 m			Same as for RayAtbs.λz	UV VIS	-polarized	MieAtbsCo.λz Attenuated Mie Co- Backscatter
	HSRL Lidar	-2 to 42 km	100 m	10 - 30 m	100 m			Same as for RayAtbs.λz	UV VIS	oss-polarized	MieAtbsX.λz Attenuated Mie Cro Backscatter
ir	e for additional HSRL Lidar HSRL Lidar	-2 to 42 km	100 m	10 -30 m	100 m	inty	NT: Des	IMPORTAL AOD. 4, AODF. 4, AAOD. 4, AEXT. 2, AABS. 2, AEXTF. 2, AE. 4 AE. 2, ACFM. 2, ANC. 1, AE2BR, AE2BR. 4, AEFR. 4, AEFR. 2, ARIR. 4, AIIR. 4, ANSPH, ANSPH. 2, APM2. 5, AVE, BSS, CA, CBH, COD, CTDC, CTDS, CTE, CTH, ICNC, IWP, PANC, PBLH Same as for RayAtbs. 3.2	UV VIS UV VIS	h Backscatter -polarized	RayAtbs.\(\lambda\z\) Attenuated Rayleig Profiles MieAtbsCo.\(\lambda\z\) Attenuated Mie Co-Backscatter MieAtbsX.\(\lambda\z\) Attenuated Mie Cro

			Geophysical		Desire	d Ca	pab	ilities		Instrument	Desired Mission
Consc		Observables	Variables	egi			Resolut	ion	nde	Class	Capabilities
	(5 of	6)		Range	Uncertainty	Δх	Δz	Swath	Altitude	5.5.5	
Minimum	Enhanced	Channels/Angles	IMP	ORTAN	T: Desired C	apabiliti	es are p	oreliminary	. Click <u>h</u>	<u>ere</u> for additional informa	ation.
Rad.λ Radiances (Maps to MO	DDIS/VIIRS)	UV: 400-470nm VIS: 635-680nm SWIR: 1.6-2.2μm # Channels: 5	Land and Ocean: AOD. & APM25, COD, CF Ocean only: AODF. & , AE. &		5%	500 m	_	100 km	_	Multispectral Radiometer	
Rad.λ Radiances (Maps to AVI	IRIS/PACE)	UV-SWIR: 400nm-2.2μm 10 nm resolution	AOD.¢, AODF.¢, AE.¢ APM25, AVE, COD, CF		7%	500 m		100 km		Imaging Spectrometer	
Rad.λα Multi-angle R (Maps to MIS		UV: 400-470 nm VIS: 550-870 nm # Channels: 4 # Angles: 5	AOD.¢, AODF.¢, AAOD.¢, AE.¢, ASYM, ANSPH, AVE, APM25, CF, CTH			500 m		100 km	_	Multi-angle Radiometer	
DOLP.λα*(I Multi-angle D Linear Polari	Degree of	UV: 350-470 nm VIS: 530-870 nm # Channels: 5 # Angles: 5	AOD.¢, AODF.¢, AAOD.¢, AE.¢, ASYM, ANSPH, ANC.¢, ARIR.¢, AIIR.¢, AVE, APM25, COD,CTDC,CTDS, CTH		Max(3% Rad, 0.005 DOLP	500 m		100 km	_	Multi-angle Polarimeter	
(DOLP.λα)* Polarized rad (Maps to APS SPEX)	liances	Hyperspectral range (400-700 nm) or hyper-angular channel (40+ angles, ~1 deg. between - 60, +60 deg. at 670 or 865 nm).	AOD.¢, AODF.¢, AAOD.¢, AE.¢, ASYM, ANSPH, ANC.¢, ARIR.¢, AIIR.¢, AVE, APM25, COD,CTDC,CTDS, CTH		Max(3% Rad, 0.005 DOLP)		_	100 km	_	Multi-angle Polarimeter	Moderate bandwidth (10-30 nm) channel centered close to wavelength or within given range

Consolidated Observables (6 of 6) Geophysical Variables Geophysical Variables Total Uncertainty Total Uncertainty Ax Az Swath Ax Az Swath Ax Az Swath Ax Ax Ax Ax Ax Ax Ax A		Desired Capabilities	Desire		Geophysical			
Minimum Enhanced Channels/Angles IMPORTANT: Desired Capabilities are preliminary. Click here for additional information. Rad.λ Radiances (Maps to MODIS+OMI) uv: 355 nm AOD.4, AAOD.4, AODF.4, AE.4, APM25, COD, CF 250 m — 300 km — Multispectral Radiometer Moderate Inm) chann to wavelen range Rad.λ Radiances (Maps to PACE+SWIR) 350nm-2200 nm (5 nm resolution) imaging spectrometer AOD.4, AODF.4, AE.4, ARIR.2, ARIR.2, AVE, COD, CF 7% 500 m — 300 km — Imaging Spectrometer Rad.λα Multi-angle Radiances (Maps to MISR + SWIR) SWIR: ~1680, ~1880, ~2260 nm AOD.4, AODF.4, AL.4, ASYM, ANSPH, ANC.4, ARIR.4, AIR.2, APM25, COD, CTH 5% 250 m — 300 km — Multi-angle Radiometer Moderate Inm) chann to wavelen range (DOLP.λα)*(Rad.λα) Multi-angle Degree of Linear Polarization SWIR: ~1680, ~1880, ~280, AODF.4, AAOD.4, AE.4, ASYM, ANSPH, ANC.4, ARIR.4,			e Total)ge	• •			Consc
Rad.λ Radiances UV: 355 nm AOD.ℓ, AAOD.ℓ, AODF.ℓ, AE.ℓ, APM25, COD, CF 250 m — 300 km — Multispectral Radiometer Moderate Innm) chann to wavelen range Rad.λ Radiances (Maps to PACE+SWIR) 350nm-2200 nm (5 nm resolution) imaging spectrometer AOD.ℓ, AODF.ℓ, AE.ℓ, APM25, AVE, COD, CF 7% 500 m — 300 km — Imaging Spectrometer Rad.λα Multi-angle Radiances (Maps to MISR + SWIR) SWIR: -1680, ~1880, ~2260 nm AOD.ℓ, AODF.ℓ, ARIR.ℓ, AIR.ℓ, AI	(6 0) 6	Uncertainty Δx Δz Swath #	ট্র Uncertainty	Rar		1 6)	(6 0)	
Radiances (Maps to MODIS+OMI) Rad.λ Radiances (Maps to PACE+SWIR) Rad.λα Multi-angle Radiances (Maps to MISR + SWIR) Rad.λα AOD.4, AODF.4, AAOD.4, AE.4, ASYM, ANSPH, ANC.4, ARIR.4, ANSPH, ANC.4, ARIR.4, AAOD.4, AE.4, ASYM, ANSPH, ANC.4, ARIR.4, ANDA.4, ARIR.4, ANDA.4, ARIR.4, ANDA.	nimum Enhanced	NT: Desired Capabilities are preliminary. Click <u>here</u> fo	MPORTANT: Desired	IMPORTANT	IM	Channels/Angles	Enhanced	Minimum
Radiances (Maps to PACE+SWIR) Rad.λα Multi-angle Radiances (Maps to MISR + SWIR) Rad.λα (Ma	diances	250 m — 300 km Multis		5,	AODF. AE. APM25,	UV: 355 nm	DIS+OMI)	Radiances
Rad.λα Multi-angle Radiances ~1680, ~1880, ~2260 AAOD.¢, AE.¢, ASYM, Multi-angle Radiances — 300 km — Multi-angle Radiometer — Multi-angle Radiometer — Moderate In nm) channels — 300 km — Multi-angle Radiometer — Multi-angle Radiometer Moderate In nm) channels Multi-angle Degree of Linear Polarization — AOD.¢, ACI, ASYM, ANSPH, ANC.¢, ARIR.¢, ANSPH, ANC.¢, ARIR.¢, nm) channels —	diances 3	7% 500 m — 300 km — Imagii	7%	5,	ARIR., AIIR., APM25,	resolution) imaging	E+SWIR)	Radiances
(DOLP.λω)*(Rad.λω) Multi-angle Degree of Linear Polarization Moderate I Name of the control of the c	d.λα Ilti-angle Radiances n	5% 250 m — 300 km Multi-a	5%	١,	AAOD.¢, AE.¢, ASYM, ANSPH, ANC.¢, ARIR.¢, AIIR.¢, AVE, APM25,	~1680, ~1880, ~2260 nm		Multi-angle Ra
(Maps to MAIA) # Angles: 5. COD,CTDC,CTDS, CTH range	Ilti-angle Degree of lear Polarization	5% 250 m — 300 km Multi-a	5%	l,	AAOD.¢, AE.¢, ASYM, ANSPH, ANC.¢, ARIR.¢, AIIR.¢, AVE, APM25, COD,CTDC,CTDS,	~1680, ~1880, ~2260 nm.	egree of ation	Multi-angle De Linear Polariza
Rad.λ Radiances VIS: ~620 nm ATHV, ATVV, CTHV, CTVV 40m 100 km Stereo Cameras 2 angles (r	I V	40m 100 km Stereo				VIS: ~620 nm		

Applications thematic Areas	Enabled Applications	End User Examples	Most Relevant Geophysical Variables	Most Relevant Observables	ACCP Goal
Disaster Monitoring	Disaster modeling: Volcanic plume, smoke aerosol vertical distribution and extent for transport modeling, aviation, public health	NOAA, FAA, NCAR, VAACs, private aviation weather forecasting companies, airlines	Aerosol Type Aerosol Extinction Aerosol Optical Depth Cloud Extinction Cloud Optical Depth	Cloud and Aerosol Profiles Cloud Mask	Goal 4 Aerosol Processes
and Modeling	Disaster monitoring and modeling: flood, landslide, post-fire debris flow	Government, Private modeling companies, operational forecast centers	Precipitation rate, 2D @surface		G2 Storm Dynamics
	Disaster risk: Parametric and risk modeling (Reinsurance, microinsurance)	Reinsurance, insurance and microinsurance industries	Precipitation rate, 2D @surface		G2 Storm Dynamics
	AQ Rule and Regulation Making: Determining patterns of air pollution exposure to determine impacts of regulations, areas that need greater monitoring efforts, conduct source apportionment	EPA, state AQ agencies, international AQ agencies, legislatures (e.g., California A.B. 617)	Aerosol Type Aerosol Extinction Aerosol Optical Depth Cloud Mask, and cloud and aerosol profiles	These stakeholders might not have the expertise to create the 2D surface particulate matter concentration L4 product (that they require) from relevant observables.	Goal 4 Aerosol Processes
Air Quality and	Estimating air pollution: exposure and impact on health outcomes to assess health risks	CDC, WHO, NIH, health researchers at universities/hospitals (e.g., Global Burden of Disease), nonprofits and environmental justice groups	Aerosol Extinction Profile, Aerosol- Cloud Feature Mask (Profile), Aerosol Optical Depth, Aerosol Number Concentration	Many of these stakeholders will likely not have the expertise to create the L4 product (that they require) from relevant observables.	Goal 4 Aerosol Processes
Health (Public and Ecosystem)	Health and Ecological Forecasting/Monitoring: Vector- and water-borne disease monitoring/modeling (e.g. malaria).	DOD Health Agency, FEMA, UNICEF, Epidemico, DHS, Pandemic Prediction and Forecasting Science and Technology, USDA, CDC, PAHO, CONAE	Precipitation rate, 2D @surface		Goal 2 Storm Dynamics and Goal 3 Cold Cloud and Precipitation
	Health insurance and reinsurance, e.g., pollution exposure risks	reinsurance industry (e.g., SwissRE), health insurance industry	2D surface particulate matter concentrations, Aerosol Extinction Profile, Aerosol-Cloud Feature Mask (Profile), Aerosol Optical Depth, Aerosol Number Concentration	These stakeholders will likely not have the expertise to create the L4 product (that they require) from relevant observables.	Goal 4 Aerosol Processes

Applications thematic Areas	Enabled Applications	End User Examples	Most Relevant Geophysical Variables	Most Relevant Observables	ACCP Goal
Health (Public and Ecosystem) and Air Quality	Operational Air Quality Forecasting: Air Quality Alerting and monitoring for extreme air quality events	Federal (NOAA, EPA) and state AQ agencies, public and private companies, onprofits and environmental justice groups	Aerosol Extinction Profile, Aerosol-Cloud Feature Mask (Profile), Aerosol Optical Depth, Aerosol Number Concentration	Extinction profiles, multiangle radiance and polarization parameters	Goal 4 Aerosol Processes
	Energy Planning: Estimate radiative fluxes for solar insolation (e.g., rainfall over time to remove dust from panels, deposition of acidic aerosols, dust/aerosol warnings/forecast to rotate/close panels). Estimate wind availability for wind energy production.	NWS, NOAA, CTM, EPA, state AQ agencies, other modeling communities; solar power companies and entities wishing to invest in solar power, such as city governments	Cloud Fraction, Radiative Fluxes, Precipitation Rate 2D@surface, Aerosol Number Concentration, Aerosol Extinction Profile, Aerosol Optical Depth		Goal 4 Aerosol Processes and Goal 5 Aerosol Impacts on Radiation
Infrastructure and Development	Energy Planning: Hydropower potential and modeling	Private Agriculture companies, NGOs, World Bank	Precipitation rate, 2D @surface	radar reflectivity, microwave brightness temperatures	Goals 2 Storm Dynamics and Goal 3 Cold Cloud and Precipitation
	Transportation and logistics: supply chain, road network maintainence, urban planning	Cargill, MARS, World Food Programme, CONAE, EcoClimaSol, Global Water and Environmental Security Analyst Defense Intelligence Agency, OXFAM, World Bank GFDRR, FEMA, NGA, State Department	Precipitation rate, 2D @surface, precipitation profile, snowfall vertical motion profile	radar reflectivity, doppler motion, microwave brightness temperature	Goals 2 Storm Dynamics and Goal 3 Cold Cloud and Precipitation
Water Resources and Agriculture	Agricultural modeling and monitoring: Water Resource Management influencing freshwater availability	Government agencies, agricultural insurance and precision agriculture, water resource managers	Precipitation rate, 2D @surface	radar reflectivity, microwave brightness temperatures	G2 Storm Dynamics and Goal 3 Cold Cloud and Precipitation
	Hydrologic Modeling: drought analysis/forecasting for fire weather, agriculture, and ecosystem health	USDA Forest Service, Private Agriculture companies, farmers, Timber companies, Prescribed burn associations	Precipitation rate, 2D @surface	radar reflectivity, microwave brightness temperature	Goal 1 Cloud Feedbacks, Goal 2 Storm Dynamics, and Goal 3 Cold Cloud and Precipitation

Applications thematic Areas	Enabled Applications	End User Examples	Most Relevant Geophysical Variables	Most Relevant Observables	ACCP Goal
Water Resources and Agriculture	Hydrologic Modeling: Total water fluxes at watershed including snowmelt, snow cover, and watershed analysis for irrigation	Hydropower (e.g. Indonesia Hydro Consult), water managers	Precipitation rate, 2D @surface	radar reflectivity, microwave brightness temperatures	Goals 2 Storm Dynamics and Goal 3 Cold Cloud and Precipitation
	Aerosol & Precipitation Interactions: Air Quality modeling and forecasting (transport, scavenging, wet deposition, dry deposition, chemical transformation)	NWS, NOAA, EPA and State Agencies, ECMWF, NRL, JMA	Aerosol Optical Depth, Vertical air velocity profile, Precipitation rate profile, Aerosol Extinction Profile, Aerosol Effective Radius Profile, Cloud Liquid Water Path, Ice Water Path, Aerosol Number Concentration, Precipitation rate at surface, Cloud Droplet Concentration, Precipitation Phase Profile, Particle Size Profile	Microwave and IR Brightness Temperatures, UV/VIS reflectance, Attenuated backscatter and depolarization ratio profiles, radar reflectivity	Goal 4 Aerosol Processes and Goal 5 Aerosol Impacts on Radiation
	Air Quality Forecasting: Forecast initialization and verification	Federal and state AQ agencies, EPA, NOAA, NRL, ECMWF, JMA, UKMET, NASA, NCAR, SMC-Canada, Air Force	Aerosol Extinction Profiles, Aerosol Types, Aerosol Optical Depths	Attenuated backscatter and depolarization ratio profiles	Goal 4 Aerosol Processes
Weather, AQ, and Climate Modeling and Forecasting	Climate Modeling: Global Climate Smoke Aerosol Transport and Aerosol and Aerosol/Cloud Feedback		Aerosol Extinction Profile, Aerosol-Cloud Feature Mask (Profile), Aerosol Number Concentration, Aerosol Optical Depth, Aerosol Extinction Profile, Cloud base height, Ice crystal particle size, Ice water path, Latent heating profile water path, Cloud droplet concentration, Cloud optical depth, Cloud Top Height, Cloud top phase, Cloud Top Temperature, Ice crystal number concentration, Total liquid water path		Goal 1 Cloud Feedbacks, Goal 4 Aerosol Processes and Goal 5 Aerosol Impacts on Radiation
	Climate Modeling: Parametrization of clouds, particle distribution for aerosols and precipitation	FEMA, ECMWF, JMA, BOM, UKMET, NASA, NCAR	Aerosol Extinction Profile, Aerosol-Cloud Feature Mask (Profile), Aerosol Optical Depth, Aerosol Number Concentration, Cloud Droplet Effective Radius, Cloud Optical Depth, Cloud Top Droplet Concentration, Cloud Droplet Concentration, Cloud Liquid Water Path, vertical air velocity profile, Precipitation particle size, Precipitation Rate, Ice water path, Radiative heating	Radar Reflectivity, Radiances(VIS,IR), Lidar backscatter, OTHER AEROSOL-related observables	Goal 1 Cloud Feedbacks, Goal 3 Cold Cloud and Precipitation and Goal 4 Aerosol Processes
	Operational Air Quality Forecasting: Tracking dust, wildfire smoke, and volcanic plumes	Federal (NOAA) and state AQ agencies, EPA, public and private companies	Aerosol Layer Heights Aerosol Non-spherical Fraction	Cloud and Aerosol Masks Aerosol Layer Types	Goal 4 Aerosol Processes

Applications thematic Areas	Enabled Applications	End User Examples	Most Relevant Geophysical Variables	Most Relevant Observables	ACCP Goal
	Numerical Weather Prediction: Coupling of aerosols within NWP modeling	NWP Centers (NOAA, NRL, ECMWF, JMA, NCAR), USDA, AFWA	Aerosol extinction profile, Cloud droplet concentration, Cloud phase profile, Precipitation particle size profile, Vertical air velocity profile	Cloud and Aerosol Profiles Cloud Mask, Radar reflectivity, Lidar Backscatter, Radar Doppler Shift	Goal 2 Storm Dynamics
Weather, AQ, and	Numerical Weather Prediction: Development & Verification of Cloud/Convective Parametrizations	NWP Centers (NOAA, NRL, ECMWF, JMA, NCAR), USDA, AFWA	Precipitation phase profile, Vertical air velocity profile, Precipitation particle size profile, Cloud phase profile, Cloud droplet concentration	Radar reflectivity, Radar Doppler shift, VIS reflectance, Thermal IR brightness temperature, microwave brightness temperature	Goal 2 Storm Dynamics
and Forecasting	Numerical Weather Prediction: Representation of initial conditions and data assimilation	NOAA, ECMWF, JMA, MeteoFrance, KNMI, BOM, UKMET, NASA, NCAR	Cloud top temperature, cloud optical depth, cloud phase profile, precipitation phase profile, vertical air velocity profile	Microwave Radiances, IR Radiances, Attenuated backscatter and depolarization ratio profiles, radar reflectivity	Goal 2 Storm Dynamics
	Weather Forecasting: Atmospheric Rivers	NASA, NOAA, NCAR, FEMA, National Hydromet. Agencies	Precipitation rate near surface, Convective core size, Cloud top temperature, Vertical air velocity profile	Doppler Radar reflectivity, Microwave brightness temperature, Thermal IR brightness temperature	Goal 2 Storm Dynamics
	Weather Forecasting: Aviation hazards related low clouds and fog, smoke, dust or icing	NOAA, FAA, NCAR, Airlines, Private Sector Aviation Forecasting Companies	Cloud base height, cloud top height, cloud top temperature, cloud phase profile, cloud optical depth, Aerosol optical depth, Aerosol Extinction Profiles, Aerosol Speciation	radar reflectivity, doppler motion, vis reflectance, IR brightness temperature, Extinction profiles, multiangle radiance and polarization parameters	Goal 1 Cloud Feedbacks, Goal 2 Storm Dynamics, Goal 3 Cold Cloud and Precipitation and Goal 4 Aerosol Processes
	Weather Forecasting: Monitoring and nowcasting of convective storms and hazards	NOAA, NWS, EUMETSAT, Commercial aviation	Precipitation discrimination, Cloud top temperature, Precipitation rate profile, Vertical air velocity profile, Precipitation phase profile	Radar Reflectivity, Radar Doppler shift, Thermal IR brightness temperature, Microwave brightness temperature, UV/VIS reflectance, Attenuated backscatter and depolarization ratio profiles	Goal 2 Storm Dynamics and Goal 3 Cold Cloud and Precipitation
	Weather Forecasting: Pre-fire weather monitoring for wildfire response and management.	NOAA, USFS, USGS, USAF, National Guard	Precipitation rate near surface, cloud base height	VIS reflectance, IR brightness temperatures	Goal 1 Cloud Feedbacks, Goal 2 Storm Dynamics, and Goal 3 Cold Cloud and Precipitation
	Weather Forecasting: Tropical cyclone development and forecasting	NWS, NOAA, ECMWF, Meteo-France, NRL, HRD, DoD	Vertical air velocity profile, Precipitation rate profile, Cloud top temperature, Aerosol Optical Depth, Precipitation phase profile	Radar Reflectivity, Radar Doppler shift, Thermal IR brightness temperature, Microwave brightness temperature, UV/VIS reflectance, Attenuated backscatter and depolarization ratio	Goal 2 Storm Dynamics

Handling "Different Observing Modes" Day, Night, Nadir and Off-Nadir Benefit Scoring

- SITs will compute Quality Scores for each of these Observing Modes:
 - 1. Nadir, daytime (nd)
 - 2. Nadir, nighttime (nn)
 - 3. Off nadir, daytime (od)
 - 4. Off nadir, nighttime (on, for CCP only)
- Using SALT defined Utilities, VF Team will calculate Benefit Scores for each one of these Observing Modes
- SALT has defined relative weights for each one of these Observing Modes, for each objective
- The VF Team will compute the final Science Benefit Score as a weighted average:

$$B = w_{nd} * B_{nd} + w_{nn} * B_{nn} + w_{od} * B_{od} + w_{on} * B_{on}$$
 (per objective)

See next slide for weights being proposed by SALT-A for SATM Release F

Weights of B-scores for Observing Modes

Objective	Nadir Day	Nadir Night	Off Nadir Day	Off Nadir Night
1	0.25	0.25	0.25	0.25
2	0.25	0.25	0.25	0.25
3	0.25	0.25	0.25	0.25
4	0.25	0.25	0.25	0.25
5	0.43	0.42	0.15	X
6	0.40	0.40	0.20	X
7	0.70	0.10	0.20	X
8	0.80	0.10	0.10	X

Mission	Agonov	bit	Operating Period Designed Likely		R	elevant Instruments	Notes
Family	Agency	ō			Name	Channels	Notes
Geostationary Operational	NOAA		2016-2038 GOES-R (≤2025)		Advanced Baseline Imager (ABI)	0.47**, 0.64*, 0.87**. 1.38, 1.61**, 2.25, 3.9, 6.2, 6.9, 7.3, 8.6, 9.6, 10.3, 11.2, 12.3, 13.3 (μm)	GOES-E = 75°W and GOES-W = 135°W Two views of North / South American Sectors
Environmental Satellite – R Series	NASA	GEO	GOES-S (<2029) GOES-T (>2020)	2016-2038	, ,	Spatial(nadir): * = 0.5 km, ** = 1.0 km, others = 2 km	Temporal: FD=10 min; CONUS=5 min; MESO=30 sec
(GOES-R/S/T/U)			GOES-U (>2026)		Global Lightning Mapper (GLM)	777.4 nm	Lightning Mapper
Meteosat – Third	EUMETSAT		2021-2041		Flexible Combined	0.44**, 0.51**, 0.64*, 0.87**, 0.91**, 1.38**, 1.61**, 2.25*, 3.8**, 6.3, 7.3, 8.7, 9.66, 10.5, 12.3, 13.3 (μm)	0°E Multipurpose VIS/IR radiometer,
Generation (MTG-I1,I2,I3,I4)	ESA	GEO	Launch 2021,	2021-2041	Imager (FCI)	Spatial(nadir): * = 0.5 km, ** = 1.0 km, others = 2 km	Temporal: FD=10 min, Europe=2.5 min
(- , , -, ,			2025, 2029, 2032		Lightning Imager (LI)	777.4 nm	Lightning imager
Himawari	JMA	GEO	2014-2031 (H8 ≤ 2022)	2014-2031	Advanced Himawari Imager	0.47**, 0.51**, 0.64*, 0.86**, 1.61, 2.25, 3.9, 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, 13.3 (µm)	H8/9 = 141°E (H9 replaces H8) Multipurpose imaging VIS/IR radiometer;
(8,9)			(H9 ≥ 2022)		<u>AHI</u>	Spatial(nadir): * = 0.5 km, ** = 1.0 km, others = 2 km	Temporal: FD=10 min, Japan =2.5 min; MESO=30 sec
GEO-KOMPSAT (2A)	KARI KMA ITT	GEO	2018-2028	2018-?	Advanced Meteorological Imager (AMI)	0.47**, 0.51**, 0.64*, 0.87**, 1.38, 1.61, 3.8, 6.2, 6.95, 7.34, 8.59, 9.625, 10.4, 11.2, 12.4, 13.3 (µm) Spatial(nadir): * = 0.5 km, ** = 1.0 km, others = 2 km	K2A = 122°E Multipurpose imaging VIS/IR radiometer (ABI, AHI heritage) Temporal: FD=15 min; NH = 5 min; MESO = 30 sec

Mission	ion Agency ja illy Agency ja		Operating Perio		Relevant Instruments		Notes	
Family	Agency	ŏ	Designed	Likely	Name	Channels	Notes	
Meteosat (MTG-S1,S2) EUMETSAT COM ESA				Infrared Sounder (IRS)	MWIR: 1600 to 2250 cm-1 (4.44–6.25 μm) LWIR: 680 to 1210 cm-1 (8.26–14.70 μm)	Medium-resolution IR imaging Fourier- interferometer, hyperspectral (0.625 cm-1 wavenumber), full-disc coverage		
	GEO	2023-2039	2023-2039	Ultraviolet, Visible and Near-Infrared Sounding (UVN) (Sentinel-4)	UV: 305–400 nm, 0.5 nm spectral resolution VIS: 400–500 nm, 0.5 nm spectral resolution NIR: 755–775 nm, 0.12 nm spectral resolution	Scanning SW (UV) spectrometer, European region coverage (30 to 65° N latitude, 30° W to 45° E longitude), better than 10km spatial resolution		
GEO-KOMPSAT	OMPSAT KARI			EO 2019-2029	2010.2	GEMS	300 – 500 nm, 0.6 nm spectral resolution	Medium-resolution spectroradiometer; SE Asia regional coverage (5S-45N latitude, 75-145E longitude)
(2B)	KORDI GEO		2019-2029 2019-?		Advanced GOCI	380, 412, 443, 490, 510, 555, 620, 660, 680, 709, 745, 865, 643.5(PAN) (nm)	Multipurpose imaging VIS/IR radiometer; Korea/Japan regional coverage (10 times/day) + once daily full disk, spatial resolution ≤ 250m	

Mission	Mission Agency		Operating Period Designed Likely			Relevant Instruments	Notes	
Family	Agency	or	Designed	Likely	Name	Channels	Notes	
Global Precipitation	NASA	LEO (Non-sun			Dual-frequency Precipitation Radar (DPR)	13.6 (Ku-band), 35.55 (Ka-band) [GHz]	Electronic scanning planar array with swath width of 245 km at 13.6 GHz, 125 km at 35.55 GHz; Coverage: +/-66° latitude every 5 days Spatial resolution: 5km horizontal, 250 m vertical	
Measurement (GPM)	JAXA	synch;incline= 65°;alt=407km)	2014-2019	2014-2032+/-5	GPM Microwave Imager (GMI)	10.65(V,H), 18.7(V,H), 23.8(V), 36.5 (V,H), 89.0 (V,H), 166.0 (V,H), 183.31+/-7(V), 183.31+/- 3(V) [GHz]	Conical scanning imager at 53deg zenith angle with 850 km swath width; Coverage: +/-70° latitude every 2 days Spatial resolution varies with frequency: 19x32km at 10.65 to 4.4x7.2km at 89-183.	
Global Change Observation Mission- Water (GCOM-W1)	JAXA	LEO (Sun-synch, cross EQ at 1330LST; inclin e=98°;alt=700k m)	2012-2017	2012-2027	Advanced Microwave Scanning Radiome ter v2 (AMSR2)	6.925(V,H), 7.3(V,H), 10.65(V,H), 18.7(V,H), 23.8(V,H), 36.5(V,H), 89.0(V,H) [GHz]	Conical scanning imager at 55° zenith angle with 1450 km swath width; Coverage: Global once/day Spatial resolution varies with frequency: 35x62 km at 6.925 to 3x5 km at 89	
		LEO				Atmospheric Lidar (ATLID)	355 [nm]	High Spectral Resolution Laser at +/-3° of along-track; Coverage: Global every 16days Spatial resolution: 30 m horizontal and 100 m vertical;
Earth Clouds, Aerosol and Radiation Explorer (EarthCARE)	ESA JAXA	(Sun- synch, cross EQ at 14:00LST.;in cline=97°;alt=3 93km: 92.5min	~2021-2024	?	Cloud Profiling Radar (CPR)	94.05 [GHz]	Doppler capability; Nadir only; Minimum sensitivity of – 35dB; Coverage: Global every 16days Spatial resolution: 750m horizontal x 400m vertical	
		period)			Multi-Spectral Imager (MSI)	670-865 [nm] (VNIR), 1670-2210 [nm] (SWIR), 8.8- 12.0 [μm] (TIR)	Pushbroom scanning; 15 km swath Coverage: Global every 8days(IR), 16days(SWIR); Spatial resolution: 500m pixel	
Green-house gas Observing Satellite (GOSAT-3)	JAXA	LEO (Sun- synch; polar orbit)	2022-2027	2022-2032	Advanced Microwa ve Scanning Radio meter v3 (AMSR3)	6.925(V,H), 7.3(V,H), 10.65(V,H), 18.7(V,H), 23.8(V,H), 36.5(V,H), 89.0(V,H), 166(V,H), 183 [GHz]	Frequencies will be likely similar to AMSR2 with addition of 2 channels at higher microwave freq.	
Weather System Follow-on-Microwave (WSF-M 1, 2)	DoD	LEO (polar orbit)	2022-?	2023-2033	Microwave Imager	10-89 [GHz]	Frequencies will be likely similar to GMI, but without high-frequency channels	

Mission	Mission Agency 등 변경		Operating Period		Re	elevant Instruments	Notes		
Family			Designed	Likely	Name	Channels	Notes		
					Advanced Technology Microwave Sounder (ATMS)	22 channels from 23.8 GHz –183.3 GHz	Absorption band MW radiometer, cross-track scanning		
					Clouds and the Earth's Radiant Energy System (CERES/RBI	CERES: 0.3-5µm, 8-12µm, 0.35-125µm	Broad-band radiometer; RBI de-manifested from JPSS-2; still scheduled for JPSS-3/4		
Joint Polar Satellite		LEO (Sun-synch, Z= 824 km,	2017-2038		Ozone Mapping and Profiler Suite - Nadir (OMPS-N)	Mapper: 300-420nm Profiler: 250-310nm	High-resolution nadir-scanning SW (UV) spectrometer		
System (JPSS) JPSS-1/NOAA-20 JPSS-2	NOAA EUMETSAT	NOAA incline =	incline = 98.7°, period = 101 mins)	incline = 98.7°, period	JPSS1 ≥ 2017 JPSS2 ≥ 2021 JPSS3 ≥ 2026 JPSS4 ≥ 2031	2017-2038	Ozone Mapping and Profiler Suite- Limb (OMPS-L)		Limb-scanning SW (UV) spectrometer; scheduled for JPSS-2/3/4
JPSS-2 JPSS-3 JPSS-4	INAGA			(each 7 years)		Cross-track Infrared Sounder (CrIS)	Nominal Mode (NSR): 1,305 spectral channels (SWIR: 3.92-4.64µm; MWIR: 5.71-8.26µm; LWIR: 9.14-15.38µm) Full Spectral Resolution Mode (FSR): 2211 spectral channels in SWIR, MWIR, LWIR	Medium-resolution IR spectrometer NSR spectral resolution: 0.625 (LWIR), 1.25 (MWIR), and 2.5 (SWIR) cm-1 FSR spectral resolution: 0.625 cm-1 in all bands	
					Visible Infrared Imaging Radiometer Suite (VIIRS)	M-bands**: 0.41, 0.44, 0.49, 0.55, 0.67, 0.75, 0.87, 1.24, 1.38, 1.61, 2.25, 3.7, 4.0, 8.6, 10.8, 12.0 (μm) DNB**: 0.7 μm I-Bands*: 0.64, 0.87, 1.6, 3.7, 11.4 (μm) Spatial(nadir): *= 0.375 km, ** = 0.75 km	Multipurpose VIS/IR spectrometer M-bands, DNB: 750m spatial resolution (nadir) I-bands: 375m spatial resolution (nadir)		

Mission	A = = = = :	Orbit	Operating I	Period	R	Relevant Instruments	Notes								
Family	Agency	Or	Designed	Likely	Name	Channels	Notes								
								Microwave Sounder (MWS)	23.8 – 229.0 GHz	Absorption-band MW radiometer					
		150				Radio Occultation (RO)	1575.42, 1176.45, 1575.42, 1176.45 (MHz)	GNSS radio occultation receiver							
			150								150	LEO		UVNS (<u>Sentinel-5</u>)	270-300, 300-370, 370-500, 685-710, 710-750, 750-775, 1590-1675, 2305-2385 (nm)
Metop-SG (A1,A2,A3)		Sun-sync, Z=830 km ~9:30 Equator	Metop-A1 ≥ 2021 Metop-A2 ≥ 2029 Metop-A3 ≥ 2036	2021-2042	Infrared Atmospheric Sounder Interferometer - New Generation (IASI-NG)	645, 655, 663, 690 (cm-1) 690 – 2420 cm-1 (0.25 cm-1 sampling) 2420, 2450, 2600, 2700, 2760 (cm-1)	IR sounder (Fourier transform spectrometer)								
			Multi-viewing, Multichannel, Multi-polarization	Polarized: 0.410, 0.443, 0.49, 0.55, 0.67, 0.865, 1.37, 1.65, 2.13 (μm) Total Radiance: 0.763, 0.765, 0.91 (μm) Spatial(nadir) = 4 km	Multi-channel/direction/polarization radiometer, swath width > 2200km 14-angles										

Imager (3MI)

METimage

Relevant Instruments

Spatial(nadir) = 4 km

 $0.443,\,0.55,\,0.668,\,0.752,\,0.763,\,0.865,\,0.914,$

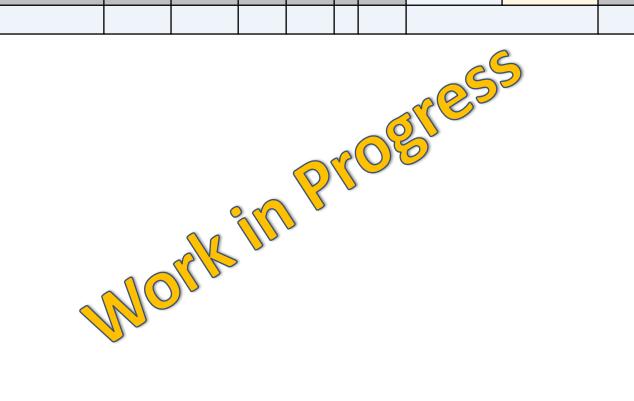
1.24, 1.375, 1.63, 2.25, 3.74, 3.959, 4.05,

6.725, 7.325, 8.54, 10.69, 12.02, 13.345 (µm)

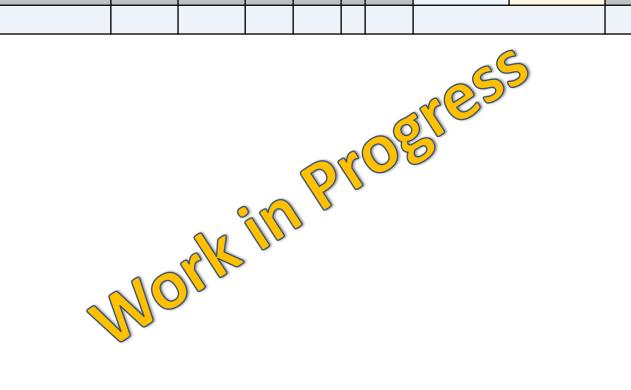
Operating Period

Multipurpose VIS/IR radiometer, ~2670km swath

width (500m nadir spatial resolution)



Mission	A	Orbit	Operating Period		Relevant Instruments		Notes
Family	Agency	Orl	Designed	Likely	Name	Channels	Notes
					RO	1575.42, 1176.45, 1575.42, 1176.45 (MHz)	GNSS radio occultation receiver
Metop-SG	EUMETSAT CNES	LEO	2022-2042	2022-2042	ICI	183.31 – 664 GHz	Ice cloud imaging MW radiometer
(B1,B2,B3)	ESA	LEO	2022-2042	2022-2042	MWI	18.7 – 183.31 GHz	Multipurpose imaging MW radiometer
					SCA	5.355 GHz (C band)	Radar scatterometer
Sentinel-2 (C)	ESA COM	LEO	2021-2029	2021-2029	MSI	442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4 (nm)	High-spatial resolution pushbroom optical imager, 290km swath; 2 satellite constellation in same descending orbit, phased 180° apart
Sentinel-3	ESA EUMETSAT	LEO	2023-2029	2023-2029	Ocean and Land Colour Instrument (OLCI)	21 channels, 0.4 – 1.02 µm 400, 412.5, 442.5, 490, 510, 560, 620, 665, 673.75, 681.25, 708.75, 753.75, 764.37, 767.5, 778.75, 778.75, 865, 885, 900, 940, 1020 (nm) ** these bands are programmable Resolution = 300 m (nadir)	Medium-resolution pushbroom spectroradiometer; 1270 km swath Note 100% overlap with SLSTR-nadir
(C)	СОМ				Sea and Land Surface Temperature Radiometer (SLSTR)	0.55*, 0.66*, 0.87*, 1.38*, 1.61*, 2.25*, 3.7**, 10.8**, 12.0 (μm) Spatial: *VIS/NIR/SWIR at 0.5 km, TIR at 1 km Gains: **Dual gain (for monitoring fires)	Multi-channel/direction radiometer; dual-view scan (1420km swath nadir, 750km swath aft)
	ESA				TriG		GNSS radio occultation receiver
Sentinel-6 (B)	EUMETSAT NASA NOAA COM CNES	LEO	2025-2030	2025-2030	AMR-C		Advanced MW radiometer


Mission	Agonov	bit	Operating	Period	Re	elevant Instruments	Notes
Family	Agency	ŏ	Designed	Likely	Name	Channels	Notes
Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)	NASA SRON	LEO	2022-2025 + 2	2022-2032 (fuel)	Ocean Color Imager (OCI)	340 nm - 890 nm, continuous at 5 nm spectral resolution; 940, 1038, 1250, 1378, 1615, 2130, 2260 nm Resolution = 1 km at nadir	MODIS + SeaWiFS + OMI heritage PACE includes two demonstration multi-angle polarimeters (HARP-2 and SPEXone) but will have low confidence to be running in 2028

	rption Optical pth		PoR	Capabil	ity			Rele	vant	
	OD	Range	Uncertainty		Resolut	tion		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
							-			

Aerosol <i>i</i>	Angstrom			PoR Cap	ability				Relev	ant	
-	onent (1)	Range	Unce	ertainty	ı	Res	olution		Observa		Notes
Instrume nt	Orbit		oncontaint,		XY	z	Т	Swath	Standard	Possible	
		-1.0 - 3.0 (water only)	Metric Accuracy Precision	Ocean (Best / Good) 0.050 / 0.001 0.377 / 0.370	0.75 km nadir		daily	3000 km	Reflectance in VIS/NIR/SWIR (VIIRS heritage)	(NOAA-	NOAA Enterprise Algorithm Resolution varies on native pixel size AE Reported only over water; reported at 0.55/0.86 mm
JPSS (NOAA- 20+) LEO 13:30 eq. x-ing, ascending		0.0 - 2.0 (Land and Water)		and: ? ater: ?	6 km nadir		daily	3000 km	Reflectance/Rac VIS/NIR/SWIR/ (NASA-MODIS/ heritage)	Thermal IR	NASA MODIS-like ("Deep-Blue/SOAR") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size Water: AE defined as 0.55/0.87 Land: AE defined as 0.41/0.48 over 'bright' surface, 0.48/0.67 over 'dark'.
		-1.0 – 3.0	Oo ±	cean: (0.4) s AOD>0.2	6 km nadir		daily	3000 km	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR (NASA-MODIS heritage)		 NASA MODIS-like ("Dark-Target") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size Ocean: Reported at 0.55/0.86 and 0.86/2.2 μm, but only validated at 0.55/0.86.

Aerosol Index	of Refraction		PoR	Capabil	ity			Rele	vant	
A	IR	Range	Uncertainty		Resolut	tion		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	

Aerosol Ang	strom			PoR Capa	bility				Relev	- m-1	
Exponer AE (2)		Range	Unce	rtainty	Ī	Reso	olution		Observa		Notes
Instrument	Orbit				XY Z T Swath		Standard	Possible			
		-1.0 - 3.0	Metric	Metric Ocean (Best / Good) 2 km 10		FD /	Reflectance in VIS/NIR/SWIR		NOAA algorithms (TBD) Resolution varies on native pixel size		
		(water only)	Accuracy Precision	0.050 / 0.001	(nadir) 10 CONU S		(NOAA-VIIRS her	itage)	AE Reported only over water; reported at 0.55/0.86 mm		
ABI (GOES- S/T/U)	GEO (75°W and 135°W)	0.0 - 2.0 (Land and Water)		and: ? ater: ?	TBD		TBD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR (NASA-MODIS/SeaWIFs heritage)		ermal IR	NASA MODIS-like ("Deep-Blue/SOAR") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size Water: AE defined as 0.55/0.87 Land: AE defined as TBD (wavelengths) Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33).
		-1.0 – 3.0	Oc ±((ean: 0.4) : AOD>0.2	10 km nadir		10 min	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR (NASA-MODIS heritage)		 NASA MODIS-like ("Dark-Target") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size Ocean: Reported at 0.55/0.86 and 0.86/2.2 μm, but only validated at 0.55/0.86. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33).

Aerosol Ang			PoR Capa	ability				Relev	/ant	
Exponer AE (3)		Range	Uncertainty		Res	olution	า	Observ		Notes
Instrument	Orbit		,	XY Z T Swath				Standard	Possible	
									5	
								-000 C		
			Nor			3	CO			

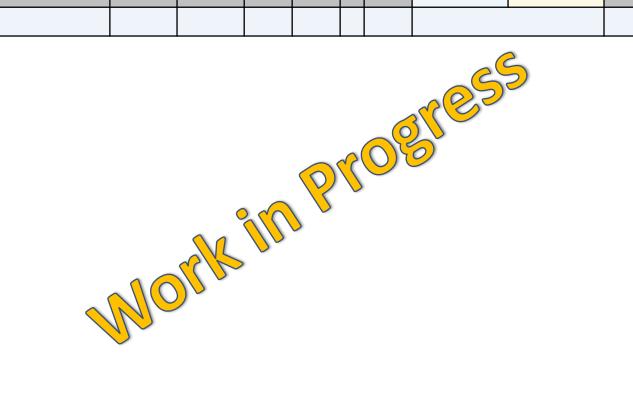
Aerosol Optio	=		PoR Ca	pability				Relev	/ant	
Mid-Visib	•	Range	Uncertainty		Res	olution	1	Observ	ables	Notes
Instrument	Orbit	Kange	Oncertainty	XY	Z	T	Swath	Standard	Possible	
		0.0 – 5.0	AOD Over Land AOD	2 km nadir		10 min ? min	FD and CONUS	Reflectance in \ (NOAA-VIIRS h		NOAA Baseline (ABI-AOD) Time/Swath given for FD mode Resolution varies on native pixel size Range/Unc. are for AOD at 0.55 μm, Other variables include spectral AOD
ABI (GOES-S,T,U)		0.0 - 5.0	Land: ±(0.15τ + 0.05) Ocean: ±(0.10τ + 0.04)	10 km nadir		10 min	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR (NASA-DarkTarget Heritage)		 "Dark-Target" aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution varies on native pixel size
GEO (75°W and 135°W)		0.0 – 4.0	Land: ±(0.15τ + 0.05)	1 km		?	gridded	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR NASA-MAIAC Heritage		 "MAIAC approach" (time/space aggregation) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution is constant (gridded)
		0.0 – 3.0	Land: ? Ocean: ?			?	FD	Reflectance/Rac VIS/NIR/SWIR/ NASA-DeepBlu	Thermal IR	 "Deep-Blue/SOAR" aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution varies on native pixel size

Aerosol Optical Depth AOD (τ) Mid-Visible (2)		PoR Cap	pability				Releva	ant		
•	•	Range	Uncertainty	ı	Res	olution		Observa	ables	Notes
Instrument	Orbit	Kange	Oncertainty	XY	z	Т	Swath	Standard	Possible	
		0.0 – 5.0?	??	2 km nadir ?		1 hour	FD and Japan	Reflectance in VIS (JAXA heritage)	S/NIR/SWIR	 JAXA products Resolution varies on native pixel size Range/Unc. are for AOD at 0.55 μm,
		0.0 - 3.0	Land: ±(0.15τ + 0.05)	6 km nadir		?	FD?	Reflectance in VIS/NIR/SWIR		YAER algorithm (single view + minimum reflectance technique)
AHI (Himawa	ari)	0.0 - 5.0	Land: $\pm (0.15\tau + 0.05)$ Ocean: $\pm (0.10\tau + 0.04)$	10 km nadir		10 min	FD	Reflectance/Radia VIS/NIR/SWIR/Th (NASA-MODIS He Note, there is no 2 (cirrus channel).	ermal IR eritage)	 "Dark-Target" aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution varies on native pixel size no 1.38 µm cirrus band may impact quality
GEO (141	°E)	0.0 – 4.0	Land: ±(0.15τ + 0.05)	1 km		10 min	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR NASA-MAIAC Heritage		NASA "MAIAC-like" (time/space aggregation) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution is constant (gridded)
		0.0 – 3.0	Land: ? Ocean: ?					Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR NASA-DeepBlue Heritage		 "Deep-Blue/SOAR" aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution varies on native pixel size
										? 呦侖80

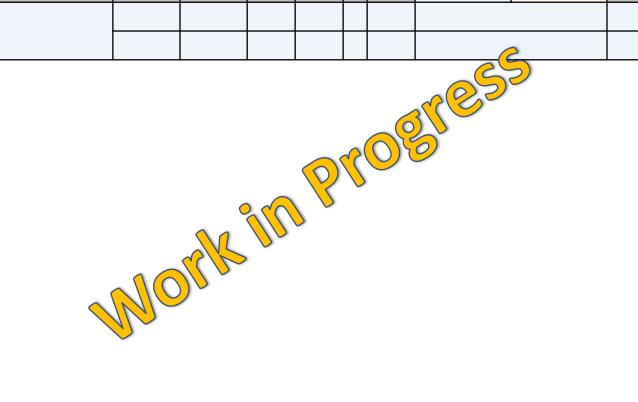
Aerosol Opti	•		PoR Cap	ability				Rele	vant	
Mid-Visib	•	Range	Uncertainty		Res	solutio	n	Observ	vables	Notes
Instrument	Orbit	Kunge	oncer tunity	XY	z	т	Swath	Standard	Possible	
		?	?				FD / Korea	Reflectance in VIS/NIR/SWIR		Presumably there is an at-launch product from Korea. Need to ask
AMI (GEO-KOMF	PSAT 2A)	0.0 - 5.0	Land: ±(0.15τ + 0.05) Ocean: ±(0.10τ + 0.04)	10 km nadir		10 min	FD	Reflectance/Radia VIS/NIR/SWIR/Th (NASA-MODIS He Note no 2.25 μm	nermal IR eritage)	NASA heritage algorithms("Dark-Target and/or "Deep Blue/SOAR") approaches: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size No 2.25 μm band may impact quality
GEO (12	'2°E)	0.0 – 4.0	Land: ±(0.15τ + 0.05)	1 km		10 min	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR NASA-MAIAC Heritage		NASA "MAIAC-like" (time/space aggregation) Retrievals consistent with NASA EOS- MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution is constant (gridded) No 2.25 μm band may impact quality
		?	?				FD / Europe			Presume at least one ESA algorithm Note presence of 0.91 μm water vapor band
FCI (MTG-I1,: GEO (0	2,3,4)	0.0 - 5.0	Land: $\pm (0.15\tau + 0.05)$ Ocean: $\pm (0.10\tau + 0.04)$	10 km nadir		10 min	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR (NASA-MODIS Heritage) Note no 2.25 µm band		NASA heritage algorithms("Dark-Target and/or "Deep Blue/SOAR") approaches: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size
320 (0		0.0 – 4.0	Land: ±(0.15τ + 0.05)	1 km		10 min	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR NASA-MAIAC Heritage		NASA "MAIAC-like" (time/space aggregation) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution is constant (gridded)
										? (動品)81

Depth			Рок Сара	pability				Relevant		
AOD (τ) Mid-Visible		Range	Uncertainty		Reso	olution		Observa		Notes
Instrument	Orbit			XY	Z	Т	Swath	Standard	Possible	
		0.0 – 5.0	Metric Land (Best / Good)	0.75 km nadir		1 or 2 per day	3000 km	Reflectance in VIS/NIR/SWIR (VIIRS heritage)	NOAA-	NOAA Enterprise Algorithm Resolution varies on native pixel size Range/Unc. are for AOD at 0.55 μm, based on ATBD paper, rather than specifications.
VIIRS on JPSS (NOAA-20+)	LEO (13:30	0.0 - 3.0	Land: $\pm (0.20\tau + 0.05)$ 3.0 Ocean: $\pm (0.10\tau + 0.03)$			1 or 2 per day	3000 km	Reflectance/Rad VIS/NIR/SWIR/7 (NASA-MODIS/S heritage)	Γhermal IR	NASA MODIS-like ("Deep-Blue/SOAR") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size Uses 0.41 μm ("Deep-Blue") bands
(NOAA-20+)	equator k x-ing)	0.0 - 5.0	Land: $\pm (0.15\tau + 0.05)$ Ocean: $\pm (0.10\tau + 0.04)$	6 km nadir		1 or 2 per day	3000 km	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR (NASA-MODIS heritage)		NASA MODIS-like ("Dark-Target") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size
		0.0 – 4.0	Land: ±(0.15τ + 0.05)	1 km		1 or 2 per day	3000 km	Reflectance/Rad VIS/NIR/SWIR/T NASA-MAIAC H	Thermal IR	NASA "MAIAC-like" (time/space aggregation) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution is constant (gridded)

Aerosol Op			PoR Capa	PoR Capability						
Depth AOD (τ) Mid-Visible)	Range	Uncertainty		Res	olution		Observables		Notes
Instrument	Orbit			хү	Z	Т	Swath	Standard Possible		
SLSTR (Sentinel-3)	LEO	?		4.5k m		?	?	Reflectance in VIS/NIR/SWIR + dual view (ATSR heritage),		ESA at launch algorithm This is near real-time processing
OLCI + SLSTR (Sentinel 3)	LEO	?						Dual view reflec mutlispectral VIS high spatial resc	S/NIR at	This is a synergy product for the two sensors on Sentinel-3, uses bands from both sensors.
OCI	150	See NASA	A algorithms on VIIRS (JPSS)	10 km		Every 1 or 2 days		VIS/NIR/SWIR spectral bands		MODIS-Dark target and/or Deep Blue/SOARa and/or MAIAC heritage over land and ocean. "At-launch" algorithms TBD
(PACE)	LEO			1 km	?	Every 1 or 2 days		VIS/NIR/SWIR spectral bands + O2A/B + UV		MODIS + OMI synergy Use O2A/B bands to estimate layer height? Use UV to estimate aerosol absorption?



Aerosol Op			PoR Capa	bility						
Depth AOD (τ Mid-Visible	;)	Range	Uncertainty	ı	Res	olution	h	Releva Observa		Notes
Instrument	Orbit			XY	Z	Т	Swath	Standard Possible		
3MI (Metop-SG	LEO (9:30		Water: ±(0.05τ + 0.05) Land: ?					Multi-angle polarized reflectance at, e.g., 0.443, 0.67, 0.865µm		POLDER heritage https://www.atmos-meas- tech.net/11/6761/2018/ https://www.atmos-meas- tech.net/4/1383/2011/amt-4-1383-2011.pdf
A1,2,3)	equ · xing)		Water: 0.10τ or 0.05 Land: 0.15τ or 0.10	3.5 (at nadir)				Multi-angle pola reflectance plus		POLDER/GRASP heritage (expectations from Dubovik)
METImage (Metop-SG A1,2,3)	LEO (9:30 equ xing)		?					Similar image/channels as VIIRS on JPSS		No official L2 aerosol products, but no reason why cannot follow the NASA heritage.



Instrument Orbit Range Uncertainty Resolution Observables Notes	Aerosol Op	tical Depth	•	PoR	Capabilit	у			Rele	evant	
Instrument Orbit XY Z T Swath Standard Possible MAX(0.3τ or 0.1) MAX(0.3τ or 0.1) DOI (on PACE) LEO MAX(0.3τ or 0.1) LEO MAX(0.3τ or 0.1) MAX(0.3τ or 0.1) DOI (on PACE) LEO MAX(0.3τ or 0.1) MAX(0.3τ or 0.1) MAX(0.3τ or 0.1) DOI (on PACE) VIS/NIR/SWIR spectral bands + O2A/B + UV Spectral reflectance in 300-500 nm Spectral reflectance in 300-500 on nm MAX(0.3τ or 0.1) M		(UV) Range		Uncertainty	R	eso	lutior	า	Obsei	rvables	Notes
OCI (on PACE) LEO MAX(0.3τ or 0.1) LEO MAX(0.3τ or 0.1) Spectral reflectance in 300-500 nm Spectral reflectance in 300-500 nm VIS/NIR/SWIR spectral bands + O2A/B + UV USe O2A/B bands to estimate in height? Use VIS/NIR/SWIR to estimate and aerosol size? OMPS (on JPSS) MAX(0.3τ or 0.1) Spectral reflectance in 300-500 nm Spectral reflectance in 300-500 nm Spectral reflectance in 300-500 nm No current algorithm UVNS / Sentinel-5 LEO	Instrument	Orbit		Oncertainty	XY	Z	Т	Swath	Standard	Possible	
VIS/NIR/SWIR spectral bands + O2A/B + UV height? • Use VIS/NIR/SWIR to estimate and aerosol size? LEO (13:30 equator x-crossing, ascending) MAX(0.3τ or 0.1) Spectral reflectance in 300-500 nm Spectral reflectance in 300-500 assumes layer height, Lambert Effective Reflectance No current algorithm	OCI (on PACE)	LEO	LEO						'		
OMPS (on JPSS) (13:30 equator x-crossing, ascending) MAX(0.3τ or 0.1) MAX(0.3τ or 0.1) MAX(0.3τ or 0.1) Spectral reflectance in 300-500 nm Spectral reflectance in 300-500 effective Reflectance No current algorithm										spectral bands	Use VIS/NIR/SWIR to estimate AOD
UVNS / Sentinel-5 LEO km	OMPS (on JPSS)	(13:30 equator x- crossing,	(13:30 equator x- crossing,						•		
	UVNS / Sentinel-5	LEO	LEO								
UVS / Sentinel-4 on GEO (Europe) GEO (Europe) GEO (Europe) GEO (Europe) 1 hr NH / Europe https://sentinel.esa.int/web/sentinelions/sentinel-4/data-products		GEO (Europe)	GEO (Europe)		km		1 hr				https://sentinel.esa.int/web/sentinel/miss ions/sentinel-4/data-products
1		GEO (Korea)	GEO (Korea) 0-5	0.1@	km (over		1 hr		•	ance in 300-500	http://tempo.si.edu/presentations/June2 016/08-GEMS-JKim-TEMPOstm.pdf
TEMPO? GEO (US) ±0.1 9 x 5 km 1 hr NH / US 290-490 & 540-740 (Hyp.) http://tempo.si.edu/presentations.h	TEMPO?	GEO (US)	GEO (US)	±0.1	9 x 5 km		1 hr		290-490 & 540	-740 (Hyp.)	http://tempo.si.edu/presentations.html

Aerosol Optica Mo	•		PoR	Capabil	ity			Rele	vant	
AO		Range	Uncertainty		Resolut	tion		Obser	vables	Notes
Instrument Orbit		Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	

Aerosol Single	Scatter Albedo		PoR	Capabil	ity			Rele	vant	
Aeros	ol SSA	Range	Uncertainty		Resolu	tion		Obser	vables	Notes
Instrument	Orbit	Nullec	9 '		Swath	Standard	Possible			
						_				

Aerosol Single Scatter Albedo			PoF	R Capability				Rele	vant	
Aerosol SSA		Range	Uncertainty	R	eso	lution		Obser	vables	Notes
Instrument	Orbit	Nange	Officer taility	XY	Z	Т	Swath	Standard Possible		
UVSN/Sentinel-5	LEO						2670 km			https://sentinel.esa.int/web/sentinel/missions/sent inel-5/data-products
UVS/Sentinel-4	GEO			8		1 hr				https://sentinel.esa.int/web/sentinel/missions/sent inel-4/data-products
GEMS (KOMPSAT- 2B)	GEO			3.5x8 km (over Seoul)		1 hr				http://tempo.si.edu/presentations/June2016/08- GEMS-JKim-TEMPOstm.pdf

Cloud A	Albedo		PoR	Capabil	ity			Rele	vant	
C	A	Range	Uncertainty		Resolut	tion		Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
CERES/RBI	LEO			20km	20km I I I I		TOA radiance in (0.3-5μm, 8-12μι		Cloud albedo derived from TOA radiances, co-located imager observations, and angular distribution models (e.g., VIIRS).	
-		-	-	-						

Cloud Effec	tive Radius		PoR	Capabil	ity			Relevant Observables		
CER	(1)	Range	Uncertainty		Resol	ution		Obser	vables	Notes
Instrument	Orbit	gc	,	XY	Z	T	Swath	Standard	Possible	
		Liquid and Ice:	Liquid: min Disk		Reflectance at 2.25µm		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP/CLAVR-x)			
		2.5-100µm	lce: ∼5µm	nadir	14// (5 min	CONUS			SZA < 65° (degraded product between 65° and 82°)
		Liauride				5 min	Meso Full			65 and 62)
		Liquid: 2-32µm	Liquid: ~40%	2km		15 min	Disk	Radiance at 3.9, 1		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties
		Ice (D _e): 5.83-	Ice:	nadir	N/A	5 min	CONUS	(8.5 and 13.3µm under future consideration)		Product (<u>NCOMP</u>) SZA > 82°
ABI	GEO	134.9µm	~15-42%			5 min Meso)		• SZA > 82
(GOES-S,T,U)		Liquid: 4-30µm Ice: 5-60µm	TBD	2km nadir	N/A	TBD	All scan modes possible	Reflectance at 1.6°	1, 2.25, 3.9µm	NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products (MOD06, CLDPROP) in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33). Daytime only
				5km nadir	N/A	10 min	Full Disk	Reflectance at 2.25	5	JAXA Himawari Products: Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
, , , ,		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI

Cloud Effec	tive Radius		PoR (Capabil	ity			Rele	vant	
CER	(2)	Range	Uncertainty		Resol	ution		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
								Reflectance at 1.61, 3.8µm		
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
2A)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	Reflectance at 1.6	1, 3.8µm	See NASA Continuity Cloud Product (CLDPROP) notes under ABI
								Reflectance at 1.6	1, 2.25, 3.8µm	
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)	5-5	See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI

Cloud Effec	tive Radius		PoR (Capabil	ity			Rele	vant	
CER	(3)	Range	Uncertainty .		Resol	ution		Obser	vables	Notes
Instrument	Orbit	Nange	Oncertainty	XY	Z	T	Swath	Standard	Possible	
		Liquid and Ice: 2.5-100µm	Liquid: ~4µm Ice: ~5µm	750m nadir	N/A	once daily	3060km	Reflectance at 2.25µm		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP) SZA < 65° (degraded product between 65° and 82°)
VIIRS (NOAA-20+)	LEO	Liquid: 2-32µm Ice (De): 5.83- 134.9µm	Liquid: ~40% Ice: ~15-42%	750m nadir	N/A	once daily	3060km	Radiance at 3.7, 10.8, 12.0µm (8.6µm under future consideration)		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties Product (NCOMP) SZA > 82°
		Liquid: 4-30µm Ice: 5-60µm		750m nadir	N/A	once daily	3060km	Reflectance at 1.6	1, 2.25, 3.8µm	NASA Continuity Cloud Products (CLDPROP): MOD06 heritage JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts. Daytime only
3MI (Metop-SG A1,2,3)	LEO							Multi-angle polarized reflectance at, e.g., 0.443, 0.67, 0.865µm		Cloud top CER Requires adequate angular sampling of the cloud bow region, scattering angles roughly 135-165°
METImage (Metop-SG A1,2,3)	LEO			500m nadir				Reflectance at 1.63, 2.25, 3.74µm		
MSI (Sentinel-2)	LEO							Reflectance at 1613.7, 2202.4nm		Spectral channel capabilities available

Evt	ent							Keie	vant	
ACF/C		Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	nunge	oncertaint,	XY	Z	Т	Swath	Standard	Possible	
			Comparison with CALIOP:	2km	N/A	15 min	Full Disk			
		cloud (conf, prob) clear	~91% detection rate, ~4%	2km	N/A	15 min	CONUS	Reflectance at 0.64 Radiance at 3.9, 6.		NOAA Enterprise <u>Cloud Mask</u>
ABI (GOES-S,T,U)	GEO	(conf, prob)	false detection, ~5% missed cloud	2km	N/A	5 min	Meso	12.3μm		
		cloud (conf, prob) clear (conf, prob)	TBD	2km nadir	N/A	TBD	All scan modes possible	Reflectance at 0.47, 0.64, 0.87, 1.38, 1.61, 2.25µm Radiance at 3.9, 8.6, 11.2, 12.3µm		NASA Continuity Cloud Mask (CLDMSK): Cloud detection consistent with NASA EOS-MODIS/SNPP-VIIRS products Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33).
				5km nadir	N/A	10 min	Full Disk			JAXA Himawari Products: Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Mask (CLDMSK) observables under ABI		See NASA Continuity Cloud Mask (CLDMSK) notes under ABI

Relevant

Note: Because cloud fraction is ill-defined (depends on FOV, aggregation scale, etc.), the PoR Capabilities are in terms of pixel-level cloud detection.

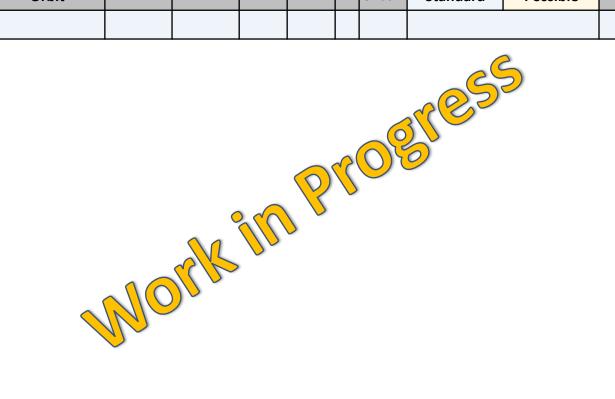
PoR Capability

Areal Cloud Fraction/Areal

Areal Cloud Fr Areal E	•		PoR	Capabil	ity			Rele	evant	
ACF/C		Range	Uncertainty		Reso	Resolution Observal		vables	Notes	
Instrument	Orbit	Mange	Officertainty	XY	Z	Т	Swath	Standard Possible		
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
2A)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Mask (CLDMSK) observables under ABI		See NASA Continuity Cloud Mask (CLDMSK) notes under ABI
FCI (MTG-I1,2,3,4)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(M1G-11,2,3,4)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin (CLDMSK) observe		See NASA Continuity Cloud Mask (CLDMSK) notes under ABI
VIIRS (NOAA-20+)	LEO	cloud (conf, prob) clear (conf, prob)	Comparison with CALIOP: ~91% detection rate, ~4% false detection, ~5% missed cloud	750m nadir	N/A	twice daily	3060km	Reflectance at 0.4 1.61, 2.25µm, plus Radiance at 3.7, 4 12.0µm		NOAA Enterprise Cloud Mask
		cloud (conf, prob) clear (conf, prob)		750m nadir	N/A	twice daily	3060km	Reflectance at 0.41, 0.44, 0.55, 0.67, 0.87, 1.24, 1.38, 1.61, 2.25µm Radiance at 3.7, 8.6, 10.8, 12.0µm		NASA Continuity Cloud Mask (CLDMSK): MOD35 heritage JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts.
METImage (Metop-SG A1,2,3)	LEO									

Ice Wat	er Path		PoR (Capabil	ity			Rele	vant	
IWP	(1)	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Kange	Oncertainty	XY Z T Swath		Standard	Possible			
		~0-6375 q		2km		15 min	Full Disk	Derived from COT		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product
		m-2	65 g m ⁻²	nadir	N/A	N/A 5 min CONUS		0.64µm) and CER 2.25µm)	(reflectance at	(DCOMP/CLAVR-x) SZA < 65° (degraded product between
						5 min Meso				65° and 82°)
		~0-1525 g		2km		15 min	Full Disk	Radiance at 3.9, 1		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties
		m ⁻²	N/A	nadir	N/A	5 min	CONUS	(8.5 and 13.3µm u consideration)	nder future	Product (NCOMP)
ABI (GOES-S,T,U)	GEO					5 min	Meso			• SZA > 82°
(0020 0,1,0)			TBD	2km nadir	N/A	TBD	All scan modes possible	Derived from COT 0.64 or 0.87µm) ar (reflectance at 1.6	nd CER	NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33). Daytime only
				5km nadir	N/A	10 min	Full Disk	Derived from COT and CER		JAXA Himawari Products: Not explicitly available, but can be calculated from existing products Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI

Ice Water Path			PoR	Capabil	ity			Rele	vant	
IWF	(2)	Range	Uncertainty Resolution					Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
					N/A					
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
2A)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible			See NASA Continuity Cloud Product (CLDPROP) notes under ABI
					N/A					
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI



Ice Wat	er Path		PoR (Capabil	ity			Rele	vant	
IWP	(3)	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard Possible		
		~0-6375 g m ⁻²	65 g m⁻²	750m nadir	N/A	once daily	3060km	Derived from COT 0.64µm) and CER 2.25µm)		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP) SZA < 65° (degraded product between 65° and 82°)
VIIRS (NOAA-20+)	LEO	~0-1525 g m ⁻²	N/A	750m nadir	N/A	once daily	3060km	Derived from COT (radiance at 3.7, 10		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties Product (NCOMP) SZA > 82°
				750m nadir	N/A	once daily	3060km	Derived from COT 0.67, 0.87, or 1.24 (reflectance at 1.67)	µm) and CER	NASA Continuity Cloud Products (CLDPROP): Algorithm heritage: MOD06 JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts. Daytime only
3MI (Metop-SG A1,2,3)	LEO							Multi-angle polarize e.g., 0.443, 0.67, 0		 Cloud top CER Requires adequate angular sampling of the cloud bow region, scattering angles roughly 135-165°
METImage (Metop-SG A1,2,3)	LEO			500m nadir						
MSI (Sentinel-2)	LEO									Spectral channel capabilities available

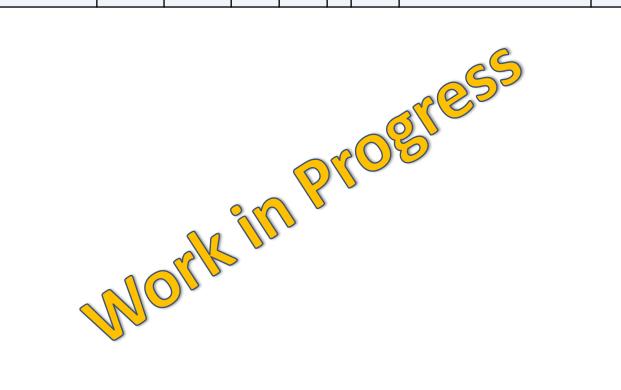
Cloud Lifecyc	Cloud Lifecycle Categories PoR Capability							Rele	vant	
CI	Range	Uncertainty		Resolu	tion		Obser	vables	Notes	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		-								

Cloud Liquid	Water Path		PoR (Capabil	ity			Rele	vant	
CLWI	P (1)	Range	Uncertainty		Resol	ution		Obser	vables	Notes
Instrument	Orbit	1.080		XY	Z	T	Swath	Standard	Possible	
		~0-8750 q	17-47	2km		15 min	Full Disk	Derived from COT (reflectance at 0.64µm) and CER (reflectance at		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product
		m-2	g m ⁻²	nadir	N/A	5 min	CONUS	0.64µm) and CER 2.25µm)	(reflectance at	(DCOMP/CLAVR-x) SZA < 65° (degraded product between
					5 min Meso		Meso	2.20μπ)		65° and 82°)
		~0-674 q	14.7 g m ⁻²	2km		15 min	Full Disk	Derived from COT	and CER	NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties
		m-2	or 29.5%	nadir	N/A	A 5 min CONUS		(radiance at 3.7, 10.8, 12.0µm)		Product (NCOMP)
ABI (GOES-S,T,U)	GEO					5 min	Meso			• SZA > 82°
(0020 0,1,0)			TBD	2km nadir	N/A	TBD	All scan modes possible	Derived from COT 0.64 or 0.87µm) ar (reflectance at 1.67	id CER	NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33). Daytime only
				5km nadir	N/A	10 min	Full Disk	Derived from COT and CER		JAXA Himawari Products: Not explicitly available, but can be calculated from existing products Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contine Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI
	-		•							

Cloud Liquid	Cloud Liquid Water Path CLWP (2)		PoR	Capabil	ity			Rele	vant	
CLW	P (2)	Pango	Uncortainty	Resolution				Obser	vables	Notes
Instrument	Orbit	Range	Officertainty	XY	Z	Т	Swath	Standard Possible		
					N/A					
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
2A)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible			See NASA Continuity Cloud Product (CLDPROP) notes under ABI
					N/A					
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)	020	See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Product (CLDPROP) observables under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI
GMI (GPM)	LEO	0-600 g/m2	10 g/m2	15 km	N/A	Vari es	904 km	Multichannel microwave radiances		

Cloud Ice V	Nater Path		PoR	Capabil	ity			Rele	vant	
CLWI	P (3)	Range	Uncertainty .		Reso	lution		Observ	vables	Notes
Instrument	Orbit	Nunge	Officertainty	XY	Z	Т	Swath	Standard Possible		
		~0-8750 g m ⁻²	17-47 g m- ²	750m nadir	N/A	once daily	3060km	Derived from COT (reflectance at 0.64µm) and CER (reflectance at 2.25µm)		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP) SZA < 65° (degraded product between 65° and 82°)
VIIRS (NOAA-20+)	LEO	~0-674 g m ⁻²	14.7 g m ⁻² or 29.5%	750m nadir	N/A	once daily	3060km	Derived from COT and CER (radiance at 3.7, 10.8, 12.0µm)		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties Product (NCOMP) SZA > 82°
				750m nadir	N/A	once daily	3060km	Derived from COT 0.67, 0.87, or 1.24 ₁ (reflectance at 1.61	ùm) and CER	NASA Continuity Cloud Products (CLDPROP): MOD06 heritage JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts. Daytime only
3MI (Metop-SG A1,2,3)	LEO									
METImage (Metop-SG A1,2,3)	LEO			500m nadir						
MSI (Sentinel-2)	LEO									Spectral channel capabilities available

Cloud Optica	al Thickness		PoR	Capabil	ity			Rele	vant	
СОТ	(1)	Range	Uncertainty		Reso	lution		Observ	vables	Notes
Instrument	Orbit	Kange	Oncertainty	XY	Z	Т	Swath	Standard Possible		
		Liquid and Ice:	Liquid: ~25%	4km nadir	N/A	15 min	Full Disk	Peffectance at 0.64µm		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP/CLAVR-x)
		0-158	lce: ~30%	2km nadir	IN//A	15 min	CONUS	Reflectance at 0.64µm		• SZA < 65° (degraded product between 65° and 82°)
		Liquid and Ice:	Liquid: 22-28%	4km nadir	N/A	15 min	Full Disk	Radiance at 3.9, 11.2, 12.3µm		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties
ABI (GOES-S,T,U)	GEO	0-32	lce: 15-32%	2km nadir	IN/A	15 min	CONUS	(8.5 and 13.3µm under future consideration)		Product (NCOMP) SZA > 82°
(8828 8,1,6)		Liquid and Ice: 0-150	TBD	2km nadir	N/A	TBD	All scan modes possible	Reflectance at 0.64 (surface type depe	•	NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33). Daytime only
				5km nadir	N/A	10 min	Full Disk	Reflectance at 0.64	1μm	JAXA Himawari Products: Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Product (CLDPROP) observables under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI
					_					


Cloud Optic	al Thickness		PoR	Capabil	ity			Relevant		
СОТ	(2)	Range	Uncertainty		Resol	ution		Obser	vables	Notes
Instrument	Orbit	Nullge	Oncertainty	XY	Z	T	Swath	Standard Possible		
								Reflectance at		
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
2A)	0.20	See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI
								Reflectance at		
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)	5-5	See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contine Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI

Cloud Optic	al Thickness		PoR (Capabil	ity			Rele	vant	
СОТ	(3)	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	T	Swath	th Standard Possible		
		Liquid and Ice: 2.5-100µm	Liquid: ~4µm Ice: ~5µm	750m nadir	N/A	once daily	3060km	Reflectance at 0.6	7μm	NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP) SZA < 65° (degraded product between 65° and 82°)
VIIRS (NOAA-20+)	LEO	Liquid and Ice: 0-32	Liquid: 22-28% Ice: 15-32%	750m nadir	N/A	once daily	3060km	Radiance at 3.7, 10.8, 12.0µm (8.6µm under future consideration)		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties Product (NCOMP) SZA > 82°
		Liquid and Ice: 0-150		750m nadir	N/A	once daily	3060km			NASA Continuity Cloud Products (CLDPROP): Algorithm heritage: MOD06 JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts. Daytime only
3MI (Metop-SG A1,2,3)	LEO									
METImage (Metop-SG A1,2,3)	LEO			500m nadir						
MSI (Sentinel-2)	LEO									Spectral channel capabilities available

Cloud Radiative	Effects (SW/LW)		PoR Capability					Rele	vant	
CF	Range	Uncertainty		Resolut	tion		Obser	vables	Notes	
Instrument	Orbit	Kunge	Onecreamey	XY	Z	Т	Swath	Standard	Possible	
	<u> </u>							_		

Cloud To	p Height		PoR	Capabil	lity			Rele	vant	
СТН	l (1)	Range	Uncertainty		Reso	lution	1	Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard Possible		
		0-15km	~1km	10km	N/A	60 min	Full Disk			NOAA Estamaiaa ADI Claud Haink Alaasikka
		0-15km	~1km	10km	N/A	60 min	CONUS	Radiance at 11.2, 12.3, and 13.3µm Radiance at 11.2, 12.3, and 13.3µm (additional IR absorption channels possible)		NOAA Enterprise ABI Cloud Height Algorithm (ACHA)
		0-20km	~1km	4km	N/A	5 min	Meso			
ABI (GOES-S,T,U)	GEO	TBD	TBD	TBD	N/A	TBD	All scan modes possible			NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33).
				5km nadir	N/A	10 min	Full Disk			JAXA Himawari Products: Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	Products (CLDPROP) observables		See NOAA Enterprise Product notes under ABI
, , , , , , , , , , , , , , , , , , , ,		TBD	TBD	TBD	N/A	TBD	All scan modes possible			See NASA Continuity Cloud Products (CLDPROP) notes under ABI

Cloud To	p Height		PoR	Capabil	ity			Rele	evant	
СТН	(2)	Range	Uncertainty -		Reso	lution		Observ	vables	Notes
Instrument	Orbit	Nalige	Oncertainty	XY	Z	Т	Swath	Standard Possible		
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
2A)	0 25	TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Contine Products (CLDPR under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)	<u> </u>	TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Products (CLDPROP) observables under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI

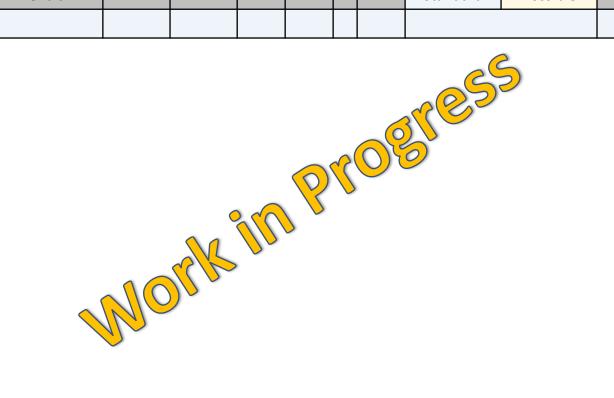
Cloud To	Cloud Top Height CTH (3)		PoR	Capabil	lity			Relevant		
СТН	(3)	Range	Uncertainty		Reso	lution		Observables		Notes
Instrument	Orbit	Nalige	Officertainty	XY	Z	Т	Swath	Standard Possible		
		0-20km	~0.75km	750m nadir	N/A	twice daily	3060km	Radiance at 8.6, 10	0.8, 12.0 μm	NOAA Enterprise AWG Cloud Height Algorithm (ACHA)
VIIRS (NOAA-20+)	LEO	0-20km	~0.75km	750m nadir	N/A	twice daily	3060km	Radiance at 8.6, 10	0.8, 12.0 µm	NASA Continuity Cloud Products (CLDPROP): Algorithm heritage: currently NOAA ACHA, additional approaches under consideration JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts.
3MI (Metop-SG A1,2,3)	LEO									
METImage (Metop-SG A1,2,3)	LEO			500m nadir						
MSI (Sentinel-2)	LEO									

Cloud To	p Phase		PoR	Capabil	ity			Relevant		
СТР	(1)	Range	Uncertainty	Resolution Observables		Notes				
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		warm liq,	~90% agreement	2km	N/A	15 min	Full Disk			NOAA Enterprise Cloud Type and Cloud
		liq, mixed, ice	with	2km	N/A	5 min	CONUS	Radiance at 7.3, 8.	.6, 11.2, 12.3μm	Phase Algorithm
ABI		ice	CALIOP	2km	N/A	5 min	Meso			
(GOES-S,T,U)	GEO	liq, ice, undetermined	N/A	2km	N/A	TBD	All scan modes possible	Cloud-top tempera 11.2, 12.3, and 13. liq/ice CER (reflect 2.25, 3.8µm)	.3µm), spectral	NASA Continuity Cloud Products (CLDPROP): Algorithm heritage: MOD06 (daytime only) and NOAA ACHA (day and night) JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts.
				5km nadir	N/A	10 min	Full Disk			JAXA Himawari Products: Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	See ABI	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
(TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Contin Products (CLDPR under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI

Cloud To	p Phase		PoR (Capabil	ity			Rele	vant	
СТР	(2)	Range	Uncertainty		Resol	ution		Observables		Notes
Instrument	Orbit	Kunge	Oncertainty	XY	Z	Т	Swath	Standard	Possible	
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	See ABI	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
2A)	020	TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Contin Products (CLDPR under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI
FCI	GEO	See ABI	See ABI	See ABI	See ABI	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)	5-0	TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Products (CLDPROP) observables under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI

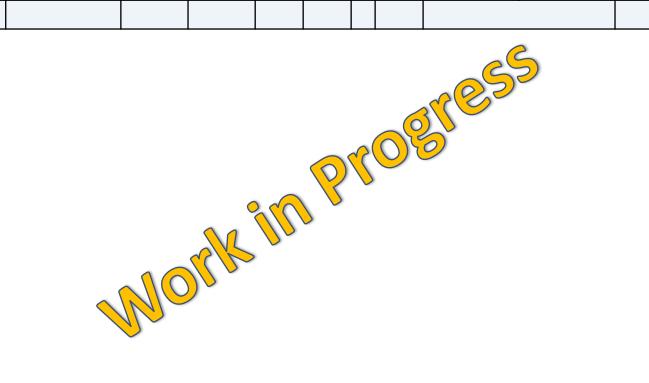
Cloud To	p Phase		PoR (Capabil	ity			Rele	vant	
СТР	(3)	Range	Uncertainty		Resol	ution		Obser	vables	Notes
Instrument	Orbit	Nange	Oncertainty	XY	Z	Т	Swath	Standard Possible		
		warm liq, supercooled liq, mixed, ice	~88% agreement with CALIOP	750m	N/A	twice daily	3060km	Radiance at 8.6, 10.8, 12.0µm		NOAA Enterprise Cloud Type and Cloud Phase Algorithm
VIIRS (NOAA-20+)	LEO	liq, ice, undetermined	N/A	750m	N/A	once or twice daily	3060km	Cloud-top tempera 8.6, 10.8, 12.0 µm CER (reflectance a 3.8µm)), spectral liq/ice	NASA Continuity Cloud Products (CLDPROP): Algorithm heritage: MOD06 (daytime only) and NOAA ACHA (day and night) JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts.
3MI (Metop-SG A1,2,3)	LEO									
METImage (Metop-SG A1,2,3)	LEO									
MSI (Sentinel-2)	LEO									

Cloud Top T	emperature		PoR	Capabil	lity			Relevant Observables		
СТТ	(1)	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard Possible		
		180-300K	~4.75K	2km	N/A	15 min	Full Disk	Radiance at 11.2, 12.3, and 13.3µm		NOAA Enterprise ABI Cloud Height Algorithm
		180-300K	~4.75K	2km	N/A	5 min	Meso			(ACHA)
ABI (GOES-S,T,U)	GEO	TBD	TBD	TBD	N/A	TBD	All scan modes possible	Radiance at 11.2, (additional IR abso possible)		NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33).
				5km nadir	N/A	10 min	Full Disk			JAXA Himawari Products: Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Products (CLDPROP) observables under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI


Cloud Top T	emperature		PoR (Capabil	, Kelevalit			Rele	vant	
СТТ	(2)	Range	Uncertainty		Reso	lution		Observables		Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard Possible		
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
2A)	<u> </u>	TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Contin Products (CLDPR under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)	320	TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Products (CLDPROP) observables under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI

Cloud Top Temperature			PoR	Capabil	ity			Rele	vant	
CTT (3)		Range	Resolution Uncertainty					Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		180-300K	~3.65K	750m nadir	N/A	twice daily	3060km	Radiance at 8.6, 1	0.8, 12.0 μm	NOAA Enterprise AWG Cloud Height Algorithm (ACHA)
VIIRS (NOAA-20+)	LEO	180-300K	~3.65K	750m nadir	N/A	twice daily	3060km	Radiance at 8.6, 10.8, 12.0 µm		NASA Continuity Cloud Products (CLDPROP): Algorithm heritage: currently NOAA ACHA, additional approaches under consideration JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts.

Cloud Vertic	al Structure		PoR	Capabil	ity			Rele	vant	
CVS		Range	Uncertainty		Resolu	tion		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		_			-			_		



Convective C	Classification		PoF	R Capabil	ity			Relev	/ant	
С	С	Range	Uncertainty	F	Resolu	ıtion		Observ	ables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	T	Swath	Standard	Possible	
				< 2 km at nadir		15- min	Full Disk	Radiances at 0.64µı		
ABI (GOES-R)	GEO	≥3 classes	N/A	(varies with spectral	N/A 5-min CONUS		Cloud top height and temperature (radiances at 11.2, 12.3, 13.3 µm); Cloud top phase (radiances at 7.3, 8.4, 11.2, 12.3 µm)		W+E satellites covers ~150°E longitude eastward to ~0°E longitude Methods: Texture and cloud depth/top trends from VIS/IR	
				band) km		30- sec Mesoscal e		Cloud optical depth (radiances at 0.64, 2.2, 3.9, 11.2, 12.3 μm)		
				< 2 km at nadir			Full Disk	Radiances at 0.64µm; Cloud top height and temperature (radiances at 11.2, 12.3, 13.3 µm); Cloud top phase (radiances at 7.3, 8.4, 11.2, 12.3 µm)		Covers ~65°E longitude eastward to ~35°W
AHI (Himawari)	GEO	≥3 classes	N/A	(varies with spectral	N/A	N/A 2.5- J. T. min				longitude Methods: Texture and cloud depth/top trends from VIS/IR
				band) km	30- sec		Landmar k/Mesosc ale	Cloud optical depth 0.64, 2.2, 3.9, 11.2,		
DPR (GPM)	LEO	≥ 3 classes	N/A	5+ km	250 m	Varie s	245 km	Radar reflectivity fac	ctor	Precipitation-based observable. Can characterize as deep/shallow convection Methods: 2ADPR, Univ.

Convective	Cloud Cover	PoR Capability						Rele	vant	
ссс		Range	Uncertainty		Resolution			Obser	vables	Notes
Instrument	Orbit	Nunge	Oncertainty	XY	XY Z T Swath		Standard	Possible		
	-	-	-							

Environmental Horizontal Wind Profiles			Po	oR Capabil	ity			Relev	ant	
	W.z	Range	Uncertainty		Resolu	ution		Observ	ables	Notes
Instrument	Orbit	Kunge	Oncertainty	XY	Z	Т	Swath	Standard	Possible	
				Varies based on	Low	15 min	Full Disk			
ABI (GOES-16+)	Geostationary	> 10 m/s	2-7 m/s	channel, availability of	- Mid- Hig	5 min	CONUS	Atmospheric Motion Vis, IR, Water Var	on Vectors – oor channels	
				trackable features	h	30 s	Meso	652)	
				Varies based on	Low	10 min	Full Disk			
AHI (Himawari 8/9)	Geostationary	> 10 m/s	2-7 m/s	channel, availability of trackable	- Mid- Hig h	2.5 min 30 s	Japan Meso	Atmospheric Motio Vis, IR, Water Var		

Norkin

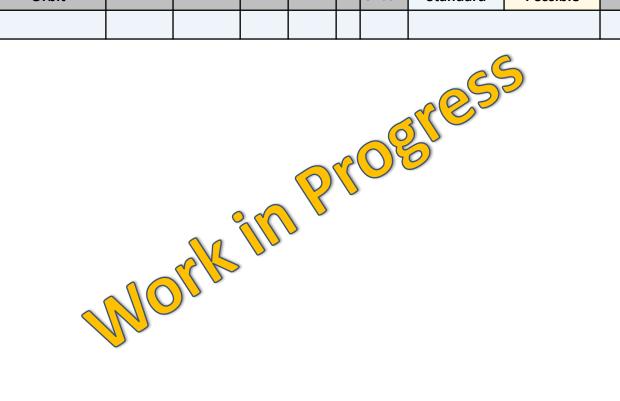
	tal Humidity files		PoR (Capab	ility			Rele	vant	
	l.z	Range	Uncertainty		Reso	lution		Observables		Notes
Instrument Orbit		Kange	Oncertainty	XY	Z	Т	Swath	Standard	Possible	
CrIS/ATMS (JPSS)	Polar	0-100 %	35%	25 km	1 km 2/day 2600 Combined microwave and IR radiances		ave and IR			

Pro	files							Keie	vant	
	Profiles ET.z		Uncertainty	Resolution			Obser	vables	Notes	
Instrument	Orbit	Range	Officertainty	XY Z T Swath				Standard	Possible	
CrlS/ATMS (JPSS)	Polar	-80-50 C	1.5 K	I 1 km I 2/day I				Combined microwa radiances	ave and IR	
		-					-			

Polovant

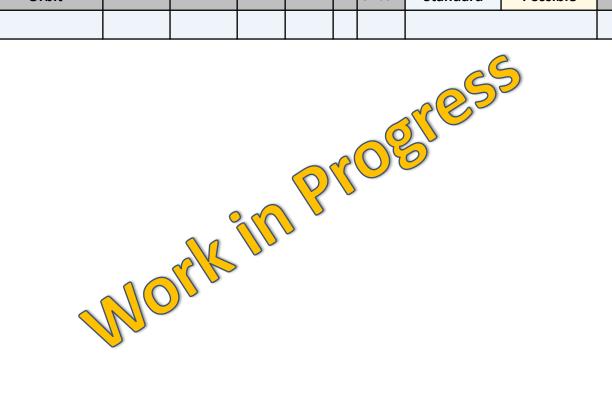
PoR Capability

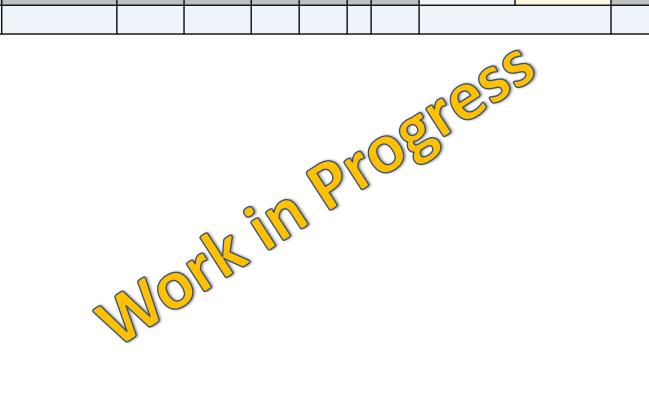
Environmental Temperature


Dro	files			сарах	,			Rele	vant	
	W.z	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Kunge	Oncertainty	XY	Z	T	Swath	Standard	Possible	
CrIS/ATMS (JPSS)	Polar	T: -80-50 C RH: 0-100 %	T: 1.5 K Absolute Humidity: 35%	25 km	1 km	2/day	2600 km	Combined microwaradiances	ave and IR	
								65		

PoR Capability

Environmental Vertical Wind


Latent Hea	ting Profile		PoR	Capabil	ity			Rele	vant	
LH	ł.z	Range	Uncertainty		Resolut	tion		Obser	vables	Notes
Instrument	Orbit	nunge	Circuitanty	XY	Z	Т	Swath	Standard	Possible	
	-	-	<u> </u>		-	_	-			


Light	tning		PoR	Capabil	ity			Rele	vant	
Lig	ght	Range	Uncertainty		Resolu	ution		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
Geostationary Lightning Mapper (GLM) - GOES-16+	Geostationary	0-60+ flashes/mi n	70% Detection Efficiency, 5% False Alarm Rate	10 km	N/A	< 1 s	Full Disk	Data structure - Ev Flashes Notable products - Event/Group/Flash Area, Flash Duration	- ı Rates, Flash	Measures total lightning
Lightning Imager (LI) - MTG	Geostationary	0- 60+ flashe s/min	70% Detection Efficiency	10 km	N/A	< 1 s	Full Disk	Data structure - Events, Groups, Flashes Notable products – Event/Group/Flash Rates, Flash Area, Flash Duration, Flash Optical Energy		Measures total lightning
Lightning Mapping Imager (LMI) - FY4	Geostationary	0- 60+ flashe s/min	90% Detection Efficiency, 10% False Alarm Rate	10 km	N/A	< 1 s	China	Data structure - Events, Groups, Flashes Notable products – Event/Group/Flash Rates, Flash Area, Flash Duration, Flash Optical Energy		Measures total lightning

	te Matter tration		PoR	Capabil	ity			Rele	vant	
P	Range	Uncertainty		Resolu	tion		Obser	vables	Notes	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		-								

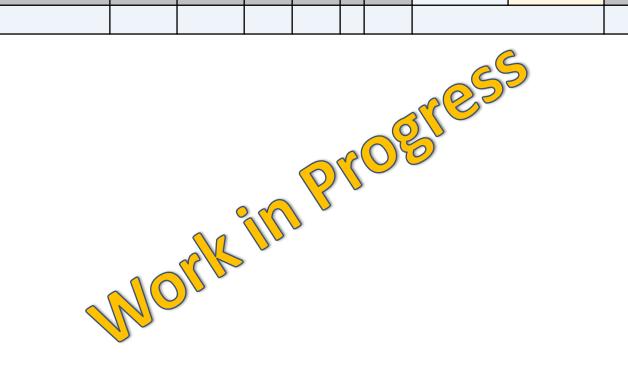
-	Planetary Boundary Layer PoR C							Rele	vant	
	LH	Range	Uncertainty		Resolut	tion		Obser	vables	Notes
Instrument	Orbit	Kunge	Oncertainty	XY	Z	Т	Swath	Standard	Possible	

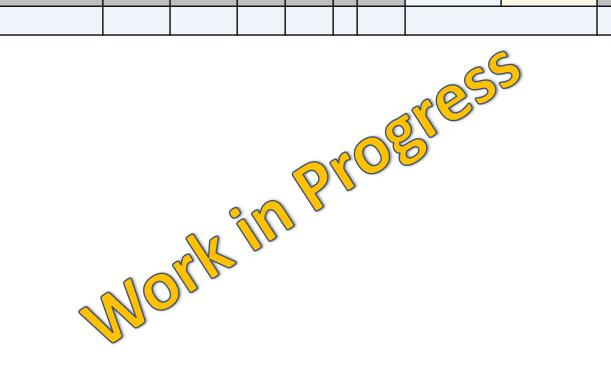
-	Discrimination		PoF	R Capabil	ity			Rele	vant	
(Stratiform/Convective) PD		Range	Uncertainty		Resolu	ution		Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
DPR (GPM)	LEO (incline=65°)	3 classes	< 13%	fp (~5km@ nadir)	250 m	Vari es with latit ude	245 km	Reflectivity profile		Parameter represented as 3 classes (stratiform/convective/other) in the 2ADPR product. Method relies upon both horizontal variability of the reflectivity and the vertical profile of reflectivity at Ku- and Ka-bands (Awaka et al., 2016 doi: 10.1175/JTECH-D-16-0016.1) Uncertainty is taken from Le et al., 2016 (doi: 10.1175/JTECH-D-15-0253.1)

Precipitation	Particle Size		PoF	R Capabil	ity			Rele	vant	
PP	S.z	Range	Uncertainty	F	Resolu	ıtion		Obser	vables	Notes
Instrument	Orbit	Range	oneer came,	XY	Z	T	Swath	Standard Possible		
DPR (GPM)	LEO (incline=65°)	0.5-4.0 mm	0.25 mm	fp (~5km@ nadir)	250 m	Vari es with latit ude	245 km (Ku- band) 125 km (Dual- frequn cy Swath)	Reflectivity profile at Ku-band (more accurate with dual-frequency profile at Ku- and Ka-band)		From the GPM DPR algorithm. Parameter represented as the melted particle massweighted mean diameter (Dm) in the GPM 2ADPR product. Method: Uses single frequency (Ku-band) used except for inner swath where dualfrequency technique is used as well. These are detailed in Seto et al., 2016 (doi: 10.1109/IGARSS.2016.7730023) Uncertainty given as MAE for 2ADPRv6 and is relative to the GPM VN (from Petersen et al., 2019 Springer book chapter). For convective precipitation, the uncertainty is higher, especially when the dual-frequency is used in v6 of 2ADPR.
DPR+GMI (GPM)	LEO (incline=65°)	0.5-4.0 mm	0.32 mm	5km@ nadir	250 m	Vari es with latit ude	125 km (Match ed Swath)	Reflectivity profile at Ku- and Ka- bands, Brightness Temperatures		From the GPM Combined Algorithm. Parameter represented as melting particle mass-weighted mean diameter (Dm) in the GPM 2BCORRA product. Method: A combination of radar+radiometer measurements, a priori scattering tables and environmental information as detailed in Grecu et al. 2016 (doi: 10.1175/JTECH-D-16-0019.1). Uncertainty given as MAE for v5 of Combined Algorithm. and is relative to GPM VN (from Petersen et al., 2019 Springer book chapter).

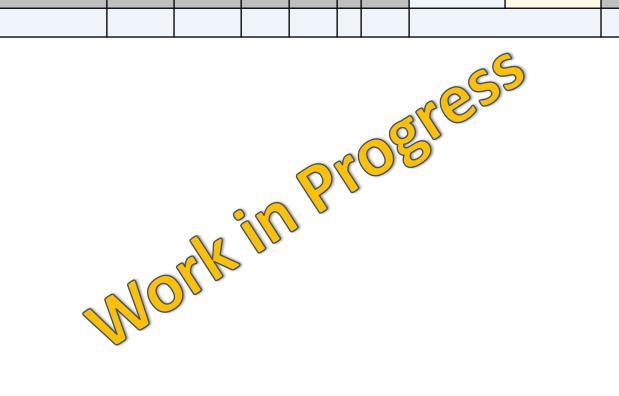
Precipitation Phase Profile			PoF	R Capability				Relevant		
PP.z		Range	Resolution Uncertainty					Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
DPR (GPM)	LEO (incline=65°)	3 classes	<5-10% (top of ML) <6-13% (bottom of ML)	5 km	250 m	Vari es with latit ude	245 km (Ku- band) 125 km (Dual- freque ncy)	Reflectivity profile a Ku/Ka-band (aka d ratio)		Method: Identification of a melting layer via detection of a Ku-band reflectivity bright band and the dual frequency ratio (DFR) profile (see Le and Chandrasekar, 2013, doi: 110.1109/TGRS.2012.2224352) Uncertainty based on for DFR method only (from Le and Chandrasekar, 2013)

Precipitation	Rate Profile		Pof	R Capab	ility			Rele	vant	
PF	R.z	Range	Resolution Uncertainty					Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard Possible		
DPR (GPM)	LEO (incline=65°)	0.2-110 mm/h	<~40% @ 1 mm/h <~30% @ 10 mm/h	5 km	250 m	Varies	245 km	Radar reflectivity fa	actor	Liquid precipitation only Uncertainties are based on near surface rainfall for 2ADPRv5 from Fig 4 of Skofronick-Jackson et al., 2018, doi: 10.1002/qj.3313)
DPR+GMI (GPM)	LEO (incline=65°)	0.2- 110 mm/ h	<40% @ 1 mm/h <25% @ 10 mm/h	5 km	250 m	Varies	245 km	Radar reflectivity factor, Brightness temperature		Liquid precipitation only Uncertainties are based on near surface rainfall for GPM Combined Alg. v5 from Fig 4 of Skofronick-Jackson et al., 2018, doi: 10.1002/qj.3313)

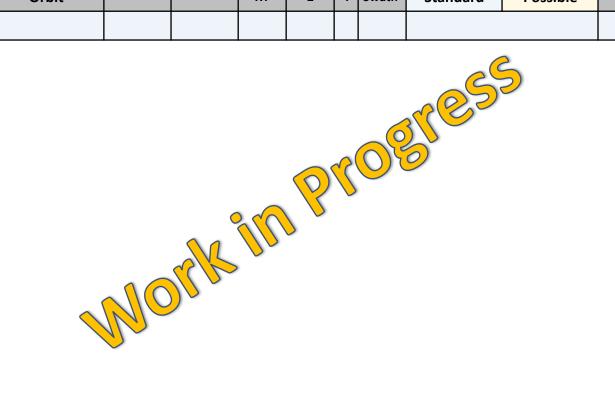

Precipitation Rate, 2D Surface PR2D (1)			PoF	R Capab	ility			Rele	vant	
PR2I	0 (1)	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard Possible		
DPR (GPM)	LEO (incline=65°)	0.2-110 mm/h	<~40% @ 1 mm/h <~30% @ 10 mm/h	5 km	N/A	Varies	245 km	Radar reflectivity fa	actor	Liquid precipitation only Uncertainties are based on near surface rainfall for 2ADPRv5 from Fig 4 of Skofronick-Jackson et al., 2018, doi: 10.1002/qj.3313)
DPR+GMI (GPM)	LEO (incline=65°)	0.2- 110 mm/ h	<40% @ 1 mm/h <25% @ 10 mm/h	5 km	N/A	Varies	245 km	Radar reflectivity factor, Brightness temperature		Liquid precipitation only Uncertainties are based on near surface rainfall for GPM Combined Alg. v5 from Fig 4 of Skofronick-Jackson et al., 2018, doi: 10.1002/qj.3313)
GMI (GPM)	LEO (incline=65°)	0.2- 110 mm/ h	75%@ 1mm/h 25%@10 mm/h	Varies based on freque ncy	N/A	Varies	885 km	Brightness tempera	ature	Method: Bayesian retrieval such as that in the GPROF Algorithm (Kummerow et al. 2015, doi: 10.1175/JTECH-D-15-0039.1) Uncertainties are based on GPROFv5 results from Fig 4 of Skofronick-Jackson et al., 2018, doi: 10.1002/qj.3313)


Precipitation R	ate, 2D Surface		Pof	R Capab	ility			Rele	vant	
PR2	D (2)	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Kunge	Oncertainty	XY	Z	Т	Swath	Standard	Possible	
AMSR2 (GCOM-W1)	LEO (Sun-synch, cross EQ at 1330LST; incline= 98°)	0.2- 110 mm/ h	Similar to GMI	Varies based on freque ncy	N/A	Varies	1450 km	Brightness temper	ature	AMSR3 should also provide this record as well other Passive Microwave Radiometers planned on future missions (e.g., WSF-M, MetOP). Method: Bayesian retrieval such as that in the GPROF Algorithm (Kummerow et al. 2015, doi: 10.1175/JTECH-D-15-0039.1) Uncertainties are based on GPROFv5 comparisons from Kidd et al., 2017 (doi: 10.1002/qj.3175)
IMERG (GPM constellation+Geosta tionary IR)	LEO+GEO	0.2- 110 mm/ h		0.1°	N/A	30- min	Global			This is the Integrated Multi-Satellite Retrievals for GPM (IMERG) product created by NASA from multiple other LEO- and GEO- based products and is precipitation gauge corrected (see Huffman et al. 2017)

Precursor Gas	Concentration		PoR	Capabil	ity			Rele	vant	
PC	SC .	Range	Uncertainty		Resolu	tion		Obser	vables	Notes
Instrument	Orbit	Kunge	Oncertainty	XY	Z	Т	Swath	Standard	Possible	

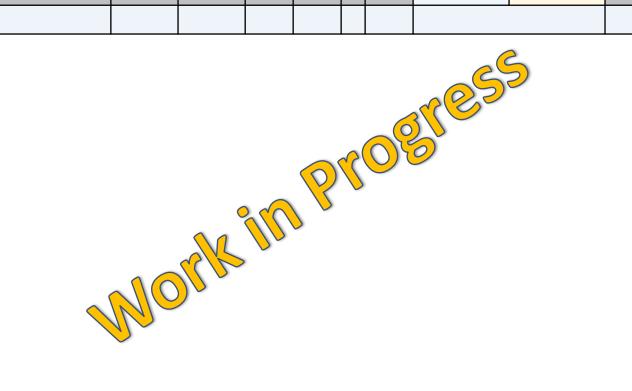


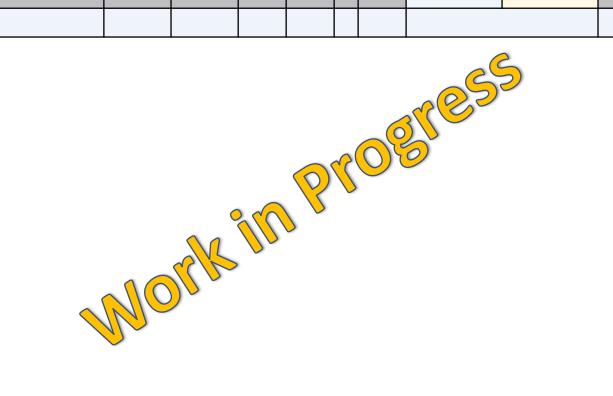
Radiativ		PoR	Capabil	ity			Relevant			
RadF		Range	Uncertainty		Resolu	tion		Obser	vables	Notes
Instrument	Orbit	Kange	Oncertainty	XY	Z	Т	Swath	Standard	Possible	
	·	-					-			



Surface		PoR	Capabil	ity			Relevant				
SA		Range	Uncertainty	Resolution				Obser	vables	Notes	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard Possible			
		-			-		-				

Surface Radi		PoR	Capabil	ity			Rele	vant	Notes	
SRB		Range	Uncertainty		Resolut	tion		Obser		vables
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		-			<u> </u>					




Surface Turbulent Fluxes			PoR	Capabil	ity			Rele	vant	
(Land/Ocean) STF		Range	Uncertainty	Resolution				Obser	vables	Notes
Instrument	Orbit	Nunge		XY	Z	T	Swath	Standard	Possible	
GMI (GPM)	LEO	0-1500 W/m2 LHF -300-1500 W/m2 SHF	20% Ocean 30% Land	25 km	N/A	Vari es	904 km	Microwave radiance reanalysis model in land)		
							-			

Total Liquid		PoR	Capabil	ity			Rele	vant	Notes	
TLWP		Range	Uncertainty		Resolut	tion		Obser		vables
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
	-	-	-				-			

Water Vapo	r Advection		PoR	Capabil	ity			Relevant		Notes
WVA		Range	Uncertainty		Resolu	tion		Obser	vables	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		-								

Aerosol	PoR Capability Aerosol												Relevant		
Parameters	AOD (VIS			AE	F - AOD	SSA	AAOD	Refr		Re	esolutio	on	Observ	Notes	
Instrument / Orbit		Oceai (Best Good	AOD (UV)	Ocean (Best /	1-400	33A	AAOD	Ken	хү	z	Т	Swath	Standard	Possible	
Accura	cy 0.018 / 0.047	0.030 0.049 0.046	/ Accuracy Precision	0.050 / 0.001	_	N/A	N/A	N/A	0.75 km (nadir)	N / A	1 or 2 daily	3000 km	Multi-spectral in V VIIRS heritage NOAA Enterpr		
VIIRS (JPSS)	0.138 Ocean: ±(0.04 + 10 Land: ±(0.05 + 15	0.060 0%)	N/A	Ocean: ±0.4 Land: N/A	Ocean: Land:	N/A	N/A	N/A	6 km (nadir)	N / A	1 or 2 daily	3000 km	Multi-spectral in V MODIS "Dark-Tar	'IS/NIR/SWIR get" hertiage	Single view
LEO	Land: ±(0.15τ 0.05) Ocean: ±(0.10τ 0.04)	+	N/A			?	?	N/A	6 km (nadir)	N / A	1 or 2 daily	3000 km	Multi-spectral in D VIS/NIR/SWIR MODIS "Deep Blu hertiage	·	Single View
	Land: ±(0.15τ 0.05)		N/A	N/A					1 km (gridde d)	N / A	daily	N/A	"MAIAC heritiatge	, 11	Multi-view aggregation
OCI (PACE)									10 km	N / A	1/day	?			See VIIRS (JPSS) At;launch algroithm
LEO	YES		YES	YES	YES	YES	YES	N/A	?	?	1/day		Multispectral VIS/ + O2A and O2B b		MODIS + OMI heritage

DS Traceability Goals 1-2

	2017 Decadal Survey Goals (from Appendix B)	ACCP Goals
W-1a W-2a	at minutes to subseasonal time scales.	G1 Cloud Feedbacks Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds.
C-5c C-2g H-1b W-1a W-2a W-4a	Quantify rates of precipitation and its phase (rain and snow/ice) worldwide at convective and orographic scales suitable to capture flash floods and beyond. Determine the effects of key boundary layer processes on weather, hydrological, and air quality. Improve the observed and modeled representation of natural, low-frequency modes of weather/climate variability.	G2 Storm Dynamics Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within storms.

DS Traceability Goals 3-5

2017 Decadal Survey Goals (from Appendix B)	ACCP Goals
 H-1b Quantify rates of precipitation and its phase (rain and snow/ice) worldwide at convective and orographic scales suitable to capture flash floods and beyond. S-4a Quantify global, decadal landscape change produced by abrupt events and by continuous reshaping of Earth's surface due to surface processes, tectonics, and societal activity. (Recommended measurement of rainfall and snowfall rates). W-1a Determine the effects of key boundary layer processes on weather, hydrological, and air quality. W-3a Determine how spatial variability in surface characteristics modifies region cycles of energy and water 	G3 Cold Cloud and Precipitation Quantify the rate of falling snow at middle to high latitudes to advance understanding of its role in cryosphere-climate feedbacks.
W-1a (boundary layer processes) W-5a (air pollution and health) C-5a Improve estimates of the emissions of natural and anthropogenic aerosols	G4 Aerosol Processes Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.
C-2a Reduce uncertainty in low and high cloud feedback. C-2h Reduce aerosol radiative forcing uncertainty C-5c Quantify the effect that aerosol has on cloud	G5 <u>Aerosol Impacts on Radiation</u> Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.

Acronyms (1/3)

Α	Aerosols
AFWA	Air Force Weather Agency
AAOD	Absorbing Aerosol Optical Depth
AOD	Aerosol Optical Depth
AQ	Air Quality
ССР	Clouds, Convection, and Precipitation
CDC	Centers for Disease Control
CMAQ	The Community Multiscale Air Quality Modeling System
СТМ	Chemical Transport Model
D	Direct
DOD	Department of Defense
DOE	Department of Energy
DRE	Direct Radiative Effect
ECMWF	European Centre for Medium-Range Weather Forecasts
EPA	Environmental Protection Agency
FAA	Federal Aviation Administration
FAO	Food and Agriculture Organization
FP	Footprint
G	Goal
GE	General Electric
GPS	Global Positioning System

Acronyms (2/3)

I	Indirect
IR	Infrared
JMA	Japan Meteorological Agency
JTWC	Joint Typhoon Warning Center
LW	Longwave
LWP	Liquid Water Path
NCAR	National Center for Atmospheric Research
NIH	National Institutes of Health
NG	Northrop Grumman
NOAA	National Oceanic and Atmospheric Administration
NRL	Naval Research Laboratory
NWP	Numerical Weather Prediction
0	Objective
OD	Optical Depth
PBL	Planetary Boundary Layer
PDC	Pacific Disaster Center
PEA	Potential Enabled Application
PM	Particulate Matter
PoR	Program of Record
P&W	Pratt & Whitney
RO	Radio Occultation
RR	Rolls Royce

Acronyms (3/3)

S	SBG (Surface Biology and Geology)
SW	Shortwave
SWNIR	Shortwave-Near Infrared
TBD	To Be Determined
TOA	Top Of Atmosphere
USDA	United States Department of Agriculture
VAAC	Volcanic Ash Advisory Center
VIS	Visible
WHO	World Health Organizations
WRF	Weather Research and Weather (Forecasting Model)

Conventions for Variable List Table

- Table entries are color-coded depending on whether the variable is needed to satisfy Minimum or Enhanced Objective.
- Color code for Essential GVs: Minimum Essential GV Enhanced Essential GV
- Each Column on the left identify potential sources for the geophysical variable:
 - A typical aerosol payload (e.g., lidar, polarimeter)
 - CCP typical CCP payload (e.g., radar, microwave radiometers)
 - ODO complementary observations from other 2017 Decadal Survey Designated
 Observables: "S" denotes the Surface Biology and Geology (SBG), and "M" denotes Mass
 Change.
 - PoR Program of Record
 - PEA Potential Enabled Application listed on the table to the left.
- The check mark V indicates that the geophysical variable is needed for meeting the objective. The check mark (V) indicates that the geophysical variable coming from the PoR may contribute to the objective but by itself it is insufficient to fully meet the objective.

Geophysical Variable Table Conventions

- Table entries are color-coded depending on whether the variable is needed to satisfy Minimum or Enhanced Objective.
- Desired capabilities:
 - ➤ The spatial/temporal scales give the averaging context for the precision/accuracy for the geophysical variable
 - o XY is the horizontal scale, while Z is the vertical scale
 - \circ T is the temporal scale with these conventions: I Instantaneous (at the time resolution of the sensor), H hourly, R Diurnal, ΔT Sequential sample at TBD delta-T (e.g., 2-minutes), D daily, W weekly, M Monthly, A annual.
 - For swath, wide typically refers to geosynchronous platforms such as GOES
 - ➤ When a variable is required with a different accuracy/precision or scale for the enhanced objective, multiple values are provided following the color convention above.
- Example of Observables. Within each Objective, groups of observables are labelled (1), (2), ..., and referred by these numbers in subsequent rows.