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Fine aerosol (PM, ) affects human health and longevity

Combustion particles, organic

oy compounds, melsl, ic All Cause 2,580,000 3,080,000

irori) i cllaimiatee <2.5um (microns) in diameter

Lower respiratory infections 425,000 461,000

<1%“§§£§;§?l";ﬁfﬁiw Tracheal, bronchus, and lung cancer 199,000 256,000

Ischaemic heart disease 676,000 852,000

Ischaemic stroke 216,000 261,000

b s e | AN Intracerebral hemorrhage 277,000 330,000
T — Subarachnoid hemorrhage 42,900 50,100

Chronic obstructive pulmonary disease 707,000 819,000

Diabetes mellitus type 2 33,000 46,800

J \\ . Groups sensitive to PM2.5
Cardiovascular system:

Respiratory system: . ’
The soluble part of PM2.5 D PM2.5 causes cardiotoxicity People with heart or respiratory
directly enters the and also causes severe diseases, the elderly, pregnant women

bloodstream and the

insoluble part accumulates
at the alveolus of the
lungs, causing
inflammation.

https://www.grida.no/resources/7544

irritation to the autonomic and children.
. nervous system, which
regulates the activity of the
V heart muscle.

(_) l “._ Reproductive system:®
Blood system: PM2.5 are attached to various

types of pollutants such as
heavy metal and PAHs, causing
placental blood toxicity that
leads to direct harm to fetus,

PM2.5 causes blood

toxicity, blood coagulation

abnormalities and can

trigger heart disease. ir growth i
and low birth weight of babies,
especially when PM2.5

ine gro! dation
exposure happens in the first
month of pregnancy.

https://twi tatus/816953926847234048



Satellltes offer more coveragethan ground monitors
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Extinction due to aerosol

in the atmospheric

column is called Aerosol

Optical Depth (AOD)
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Satellite-based Aerosol Optical Depth (AOD) retrievals have much greater coverage.
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Satellite-based AOD has its own challenges...

* AOD accuracy varies with both
retrieval/instrument and location/conditions

 Unclear which AOD dataset is best

First part of talk 4 < AOD is not PM, ¢

* AOD optically represents all aerosol in the entire
column

* Need a way to relate to PM, . at the surface

...but offers unparalleled richness

Second part of talk



Different AOD datasets have different
strengths/weaknesses

Differences result from instrumentation, methodology and samplmg

AOD [unitless]

 AOD [unitless]
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How can AERONET locations tell us about unmonitored locations?

AEROSOL ROBOTIC NETWOR!

Global network of sun photometers

> 25 years of data
High accuracy (AOD within £0.01)

Standard data source for AOD validation

For any location on earth, w

Dark Target (MODIS Terra)
[EY
o

*surface reflectance is a major uncertainty source for

remote sensing

Month-specific AERONET-SATELLITE AOD
subset comparisons are categorized and/or
weighted by:

* Land type

* Normalized Difference Vegetation

Index
* Proximity
* Season

Continuous, Consistent,
Global Error Definition
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Global Evaluation: Use each dataset at it’s best
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. Combined AOD

Combine all AOD sources
weighted by NRMSD"}, bias
correction, data density:
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Hammer et al., ES&T, 2020



The aerosol column (AQOD) is related to surface PM, .

We relate satellite-based retrievals of aerosol optical depth (AOD) to PM, . using a global chemical transport model.

Chemical Transport Models (CTMs), such as GEOS-Chem,
combine the equation that govern atmospheric chemistry
and physics with global meteorology and emissions

Dptical Dept

e,  Detailed aerosol-oxidant model
GE L5 S « 50-100 tracers, 100’s reactions
* Assimilated meteorology

Resolution of between 2° x 2/3°
(nested) to 2° x 2%2° (global)
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Ground monitors offer an additional source of

Hybrid Geophysical-Statistical PM, ¢ estimates interpret
the residual bias between ground monitors (GM)
and geophysical PM,  with a statistical framework

information
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Geographically Weighted Regression (GWR) provides a

spatio-temporally varying, linear regression to:
(GM PM,  — SAT PM, ) = ZB.SPEC, + BED +
ULT: Urban Land Type

By ULT

ED: Local Elevation Difference with GEOS-Chem grid

SPEC: Speciated PM,  concentrations
B: predictor-specific, spatially varying coeffi

van Donkelaar et al., ES&T, 2015

cients

Hybrid (ug/m°)

§ 200
- Unc = M1.2,6.7) ;
-y =0.91x+1.3 : 100
150 N =3783 ;
: S
[ ] 0
100} . 0 i B*° 3
[ " ] ©
' ' s e, &
T : :Z
S0F | idewdt” 1 W5
S 7 X 3
R Sl
L%t
o N L201:] W°
0 50 100 150 200 1

In Situ (ug/m?)

Hammer et al., ES&T, 2020



Data offers unique and consistent Iong-term view
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Population 2 (dP/dlog[dC])
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Meteorology impacted PM, s during COVID-19 lockdowns
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Changes in PM, ¢ during lockdown is largely associated
with meteorology and transportation emissions.
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Case Study: Moscow Wildfire Summer 2010

* Hottest in recorded history at that time
* Widespread wildfires

» State of emergency declared

* Thousands of buildings destroyed

* Daily deaths in Moscow doubled

Cloud or Aerosol?

Needed to
modified cloud
- filters 0 50 100 150 200 300 400 500 700 900 1100
PM,  [ng/m7]
1000 —I direct inl—situ I ‘ I I % I—
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van Donkelaar et al., AE, 2011




Global impact of g|0ba| data  Global Burden of Disease - PM, . causal

role in 3 million deaths per year

Number of deaths related to risk factors in China, 2017
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Inform Epldemlologlcal Studies:
" i e COVID-19 associations (Chakrabarty, 2020) ¢ Adverse birth outcomes (Fleischer et al., 2014;

Qiao et al., 2019; Wang et al., 2019; Han et. Al, 2020)
* Maternal Exposure and Childhood
Cancer (Lavigne et al., 2017)

e Cardiovascular Disease (Chen, EHP, 2020)

* Childhood asthma (Anderson et al., 2012;
Lavigne et al., 2018)

* Lung cancer (Hystad et al., 2012)
* Mortality in California (Jerrett et al., 2013)

* Hypertension (Chen etal., 2013)

 Low P|V|2_5 effects (crouse et al., 2012; Pinault et
al., 2016; Pinault et al., 2019)

 Diabetes (Brooket al., 2013; Chen et al., 2013; . )
( * Psychological Distress (pinault et al., 2020)

Paul et al., 2020)
* Dementia (Chen et al., 2017; llango et al., 2019)

 Heart Failure (Baietal., 2019)

Crouse et al., EHP, 2012
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