Overview of Current & Future Program of Record

with special attention on aerosol observations & applications

Aaron Naeger (MSFC), Bryan Duncan (GSFC), Ali Omar (LaRC), Amber Soja (LaRC), Melanie Follette-Cook (GSFC)

Current: LEO & GEO Radiometers for Aerosols

- ➤ Low-earth orbit (LEO)
 - NASA's A-Train: Terra MODIS (1999-present), Aqua MODIS (2002-present), Terra MISR (2000-present)
 - SNPP VIIRS (2012-present), NOAA-20 VIIRS (2017-present)
- ➤ Geostationary orbit (GEO)
 - GOES-16 / -17 ABI (2016- present), Himawari 8/ 9 AHI (2014-present), MSG SEVIRI (2005-present)
- ➤ Lagrange point
 - DSCOVR EPIC (2015-present)
- ➤ Advantages: Daily global coverage of aerosol optical depth (AOD), high temporal frequency in GEO coverage areas
- > Limitations: columnar measurements, aerosol type information

Current: Lidars for Aerosols

- > CALIOP, flying in NASA A-Train, observes vertical structure of aerosols in atmosphere
- > Advantages: Vertical distribution of aerosol types (i.e., coarse dust vs fine particles) and concentrations, including in lower troposphere where people live
- ➤ **Limitations**: Limited spatial coverage with lidar curtain, large uncertainties separating between fine mode aerosols (e.g., smoke) and aerosol mixtures

PoR: Relevant Literature on AOD to PM Conversion

Current: Spectrometers & Sounders for Trace Gases

- > OMI, TROPOMI, IASI, and CrIS provide daily global coverage of trace gas pollution (NO2, HCHO, SO2, CO, CH4, CHOCHO, NH3, O3) along with information on aerosols
- > Advantages: High spatial resolution and sensitivity in troposphere, particularly TROPOMI.
- > Limitations: Lack of diurnal information due to mid-day scans. Limited capabilities to separate gas concentrations in lower troposphere and PBL where people live.

Current: Ground-based AQ Instruments

- ➤ Suite of different ground-based AQ instruments
 - EPA reference-grade monitors for measuring trace gases and PM at surface-level, along with rapidly expanding low-cost sensors that can help fill gaps in reference-grade network
 - Expanding network of NASA Pandora spectrometers for columnar trace gas amounts
 - TOLNet lidars at key sites in U.S. and Canada and deployments in field campaigns for aerosol and O3 profiles
- Ground-based monitors critical for AQ monitoring, validation, and complementing satellite and model-based products for improved AQ information in PBL and surface-layer

Future: Tropospheric Emissions: Monitoring of Pollution

TEMPO Baseline Products

Species/Products	Required Precision	Temporal Revisit
0-2 km O₃ (Selected Scenes) Baseline only	10 ppbv	2 hour
Tropospheric O ₃	10 ppbv	1 hour
Total O ₃	3%	1 hour
Tropospheric NO ₂	1.0×10^{15} molecules cm ⁻²	1 hour
Tropospheric H₂CO	1.0×10^{16} molecules cm ⁻²	3 hour
Tropospheric SO ₂	1.0×10^{16} molecules cm ⁻²	3 hour
Tropospheric C ₂ H ₂ O ₂	4.0×10^{14} molecules cm ⁻²	3 hour
Aerosol Optical Depth	0.10	1 hour

(TEMPO)

Expected launch October 2022 UV/VIS Imaging Spectrometer

- > Hourly daylight observations of trace gases and aerosols over Greater North America
- > Suite of products at high spatiotemporal resolution will significantly advance capabilities to use satellite data for numerous science applications, particularly health and AQ applications

First 0-2 km ozone product from space-based instrument

Synthetic "Pre-launch" TEMPO Tropospheric NO₂ (Aug. 10, 2013) 1300UTC

Early Adopters Program

> Expand user base of TEMPO data and tailor mission to user needs

➤ Goal: Accelerate and maximize use of TEMPO data for societal benefit

Weather AQ Monitoring **Modeling &** & Forecasting Forecasting Environmental Monitoring & Health

Human

Health

TEMPO Early Adopters Program Contact:

Aaron Naeger, TEMPO Deputy Program Applications Lead,

Application

Focus Areas

Pollutant

Emissions

AQ Rule &

Regulation

Future: Geostationary Constellation of AQ Observations

GEMS AOD

Credit: M
Informat
Environ

Rathman
Gual

Rath

Credit: Ministry of Science and Technology Information and Communication Ministry of Environment Ministry of Oceans and Fisheries

UV/VIS Imaging Spectrometers

GEMS NO2

- ➤ GEMS mission is first to provide hourly daytime observations of trace gases and aerosols from space, expected lifetime > 10 years
- AQ information at high spatiotemporal scales particularly important across Asia where large populations often exposed to hazardous AQ
- ➤ GEMS will be joined by TEMPO and Sentinel-4 for forming revolutionary geostationary constellation of air quality observations

GEMS

https://news.joins.com/article/23923758

Future: Multi-Angle Imager of Aerosols (MAIA) Mission

➤ MAIA will characterize the sizes, compositions, and quantities of particulate matter (PM) in air pollution

➤ Primary purpose: Study how different types of PM affect our health over the world's major cities

Key products:

- Total PM10
- Total PM2.5
- Sulfate PM2.5
- Nitrate PM2.5
- OC/EC PM2.5
- BC PM2.5

Calibration/Validation Target

USA-RailroadValley

LBY-Libva4

NAM-Gobabeh

Dust PM2.5

Expected launch 2022

➤ Synergistic applications with TEMPO mission highlighted in MAIA-TEMPO Early Adopters Workshop

MAIA Early Adopters Program Contact:

Abbey Nastan, MAIA Deputy Program Applications Lead, abigail.m.nastan@jpl.nasa.gov

Future: Other Key Missions

➤ Other key missions to advance AQ observations

- EarthCARE (2021; MSI, ATLID) improve understanding of processes involving clouds, aerosols, and radiation
- 3MI (2021) provide aerosol characterization for climate monitoring, NWP, atmospheric chemistry and AQ
- MethaneSAT (2022) locate and quantify CH4 emissions at high spatial resolution throughout the globe
- EMIT (2022) improve mapping of surface mineralogy of arid dust regions to better account for dust in forecasts
- PACE (2023; OCI, SPEXOne, HARP-2) new capabilities for aerosol characterization from space with near global daily coverage
- GEO-XO (2030s) improve monitoring of Earth's weather, oceans, and environment at high-resolution

How can the ACCP mission leverage the future PoR to further advance AQ products and applications?

Multi-channel/direction imaging radiometer, Atmospheric lidar

Multi-channel/direction/polarization imaging radiometer, VIS/SWIR imaging spectrometer

