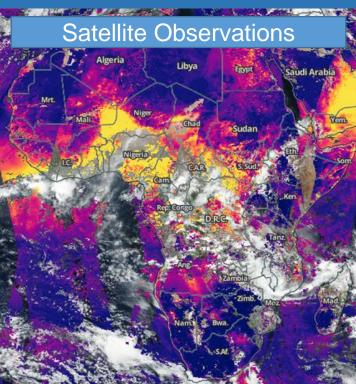
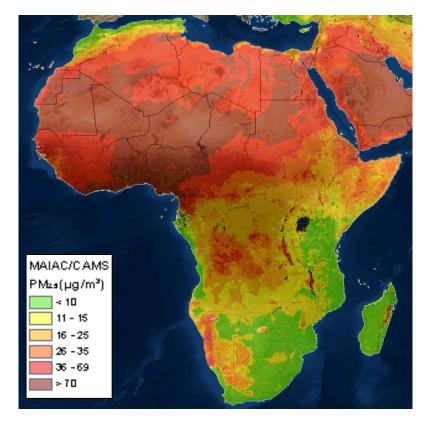
Global Framework for Air Quality Monitoring

By Nathan Paylovic, 1 Sean Khan, 2 and Brian Sullivan, 3 ¹Sonoma Technology, Inc., Petalma, CA; ²UN Environment, GEMS/AIR Program, Nairobi, Kenya ³Google, Mountain View, CA

For NASA ACCP Air Quality Virtual Workshop


March 18, 2021

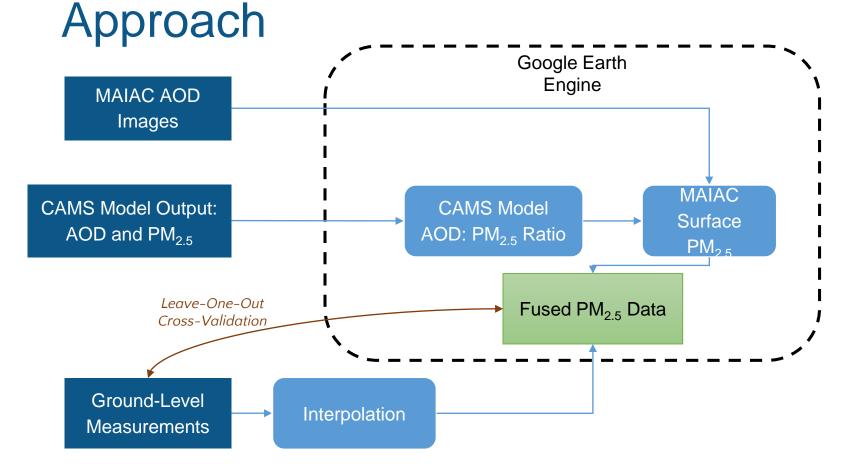
GEMS/Air Global Air Quality Monitoring Framework



Data fusion to support high-resolution air quality information

- Merge surface measurements with satellite observations
- Pilot initiative with focus on African cities
- Support decisionmaking and local control of data

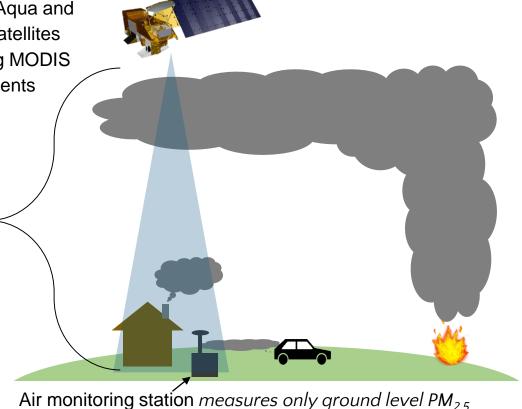
The International Data Fusion System


- Provides near-real-time, high spatial resolution data for surface-level PM_{2.5}
- The system offers advantages including:
 - International coverage
 - High spatial resolution data
 - Near-real-time data availability
 - Data from both low-cost and regulatory-grade monitors
 - Model data incorporated

Data Sets Used in This Work

Data Set	Spatial Resolution	Spatial Coverage	Temporal Resolution	Time Period	Uses
Copernicus Atmosphere Monitoring Service (CAMS) Near-Real Time PM _{2.5} and Aerosol Optical Depth (AOD)	40 km, interpolated to 12.5 km	Global	3 hours	2014- Present	Adjust MAIAC AOD to surface PM _{2.5}
Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD	1 km	Global	Daily	2000– Present	Develop surface PM _{2.5}
PM _{2.5} from Dalhousie University (V4.GL.03)	1 km, smoothed	Global	Monthly	2012- 2017	Alternate adjustment for MAIAC AOD
Ground Measurements of PM _{2.5}	Point-based	Limited Urban Areas	Hourly	Variable	Validation and data fusion

PM_{2.5} Data Fusion Processing

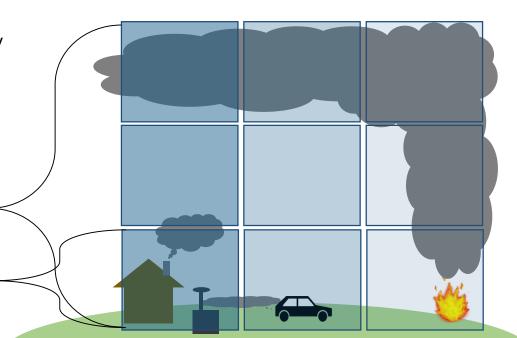

MAIAC AOD Measurement

NASA Aqua and Terra satellites carrying MODIS Instruments

MODIS images used to generate MAIAC AOD reflect:

- Ground-level air pollution
- Air pollution aloft
- Humidity

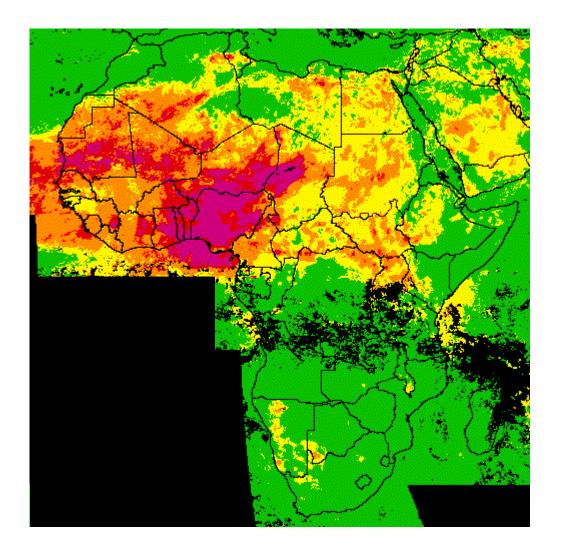
Imagery alone cannot distinguish among these components


Estimation of Surface Level Pollution from AOD with Photochemical Modeling

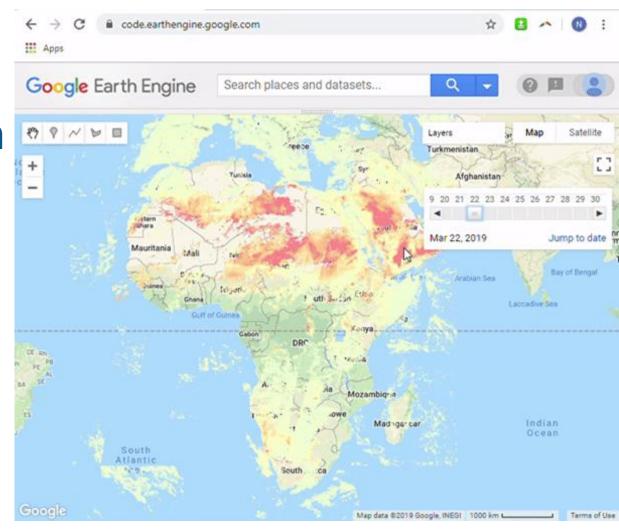
CAMS photochemical model creates vertically and horizontally gridded, disaggregated representation of:

- Ground-level air pollution
- Air pollution aloft
- Humidity

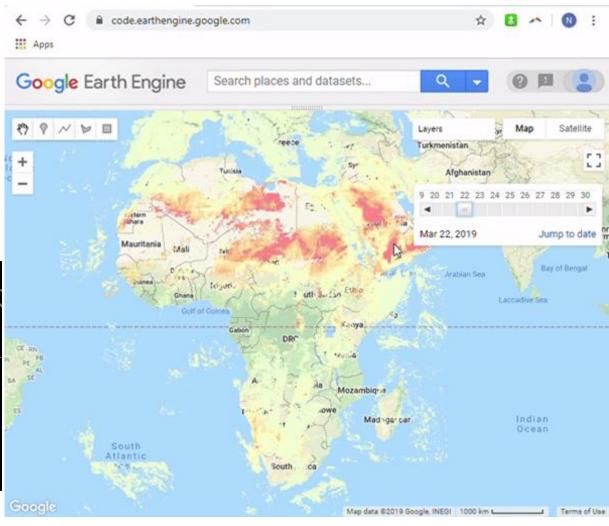
Vertical layers are summed tocalculate AOD


Lowest model layer is used to calculate ground-level PM_{2.5}

Weekly Average Ground-Level PM_{2.5} from Satellite

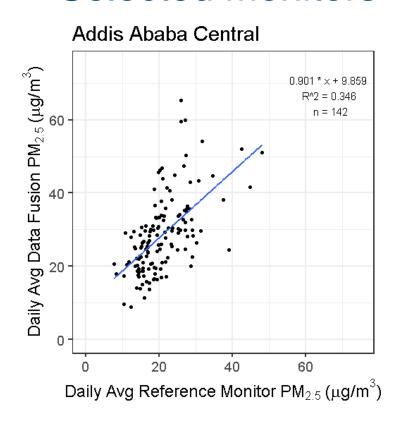

- Within WHO Guideline
- 1-2 Times WHO Guideline
- 2-4 Times WHO Guideline
- 4-6 Times WHO Guideline
- >6 Times WHO Guideline

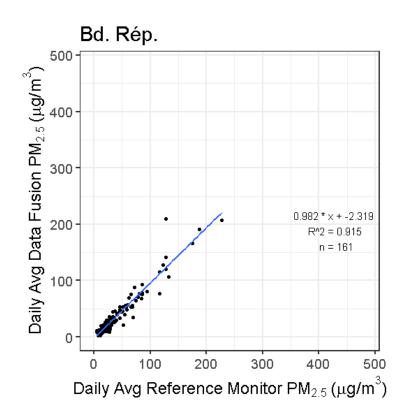
WHO Guideline 24 Hour Average PM2.5 Guideline: 25 μg/m³


Daily Ground-Level PM_{2.5} from Satellite

- Daily 24-hour average groundlevel PM2.5
- Continental coverage up to early 2019
- 1 km resolution

Daily Ground-Level PM_{2.5} from Satellite


24-Hour CAMS averaging and 5 km smoothing produce promising results at 4 of 6 monitors


Evaluation of agreement between ground-level observations and satellitederived ground-level PM_{2.5} (MAIAC/CAMS)

Country	Site	R ²	RMSE
Ethiopia	Addis Ababa	0.00	28.1
Botswana	Gaborone City	0.00	17.8
Uganda	Kampala	0.25	27.5
Senegal	Bel Air, Dakar	0.54	38.1
Senegal	Guediawaye, Dakar	0.43	49.5
Senegal	Bd. Republique, Dakar	0.64	39.8

- Evaluation was performed using daily average ground-level PM_{2.5}
- R² represents the proportion of variability in ground monitor data reflected in the satellite-derived PM_{2.5}
- Root mean square error (RMSE) indicates the magnitude of the error between satellite-derived and observed PM_{2.5}
- Sites in Senegal showed the best agreement with surface data
- Botswana and Ethiopia sites showed very little agreement between ground observations and satellite-derived PM_{2.5} 11

Ground-Level Data Fusion Results for Selected Monitors

Summary

- Benefits:
 - "Filling the gap" where surface data availability is limited
 - Near-real-time air quality event monitoring
 - Monitor siting decisions, in conjunction with other available data sets
- Fusing ground-level observations (where available) with satellite data can improve air quality data provided
- Satellite data gaps can limit daily coverage, but several promising gapfilling approaches are available
- Operational production of satellite-based PM_{2.5} data will provide useful data now while facilitating additional evaluation and enhancement
- Next steps: Implement operational fusion approach and ongoing refinement

Sonoma Technology

Nathan Paylovic Lead Geospatial Data Scientist npavlovic@sonomatech.com @n_pavlovic

