

Rapid Emission Updates With Satellite Observations

Daniel Tong

George Mason University

Contributions from Yunyao Li (GMU), Barry Baker (GMU/NOAA), Rick Saylor (NOAA), Shobha Kondragunta (NOAA), Xiaoyang Zhang (SDSU), Ralph Kahn (NASA)

NASA ACCP Air Quality Virtual Workshop March 16-18, 2020

Emission and Chemical Data Assimilation

Chemical Data Assimilation (CDA): Use satellite observations to improve chemical fields, including initial concentrations.

Emission Data Assimilation (EDA): Assimilate satellite observations to reduce

emission uncertainties;

EDA provides rapid emission refresh for air quality forecasting.

Ensemble Wildfire Forecasting: Camp Fire

(Li, Tong, et al., 2020)

- FRP (MODIS/VIIRS): wildfire emissions and plume rise modeling;
- MISR plume height, MODIS/VIIRS AOD, TROPOMI CO/NO₂ for model validation;

2020 "GigaFire", Ozone and $PM_{2.5}$ Exceedance

(Yunyao Li)

- Wildfire NO_x emissions (and VOCs)are highly uncertain;More challenging topredict O_3 exceedancethan $PM_{2.5}$;
- When there is a big fire, it rules!

Predicting Dust Storms

- 0.8

- 0.7

0.6

- 0.5 - 0.4 S

-0.3

- 0.2

-0.1

0.0

(Barry Baker, GMU/NOAA)

Satellite products used:

Source: MODIS/VIIRS NDVI, BRDF/Albedo; Validation: MODIS/VIIRS AOD, Dust Mask

Concluding Thoughts

- Air quality improves, extreme events increase;
- Some pressing needs in forecasting air quality extreme events:

Topics	Challenges
Wildfire Forecasting	High-opacity retrievals;
	Plume height (more often, better vertical resolution);
	Burning stage (emission factors; hygroscopicity etc).
	Data Latency;
Dust Forecasting	Observing time (NA dust peaks in late afternoon; Fatal
	dust accidents at 5PM);
	Dust source detection;
	Aerosol type (dust mask);
	Better dust retrievals with cloud;