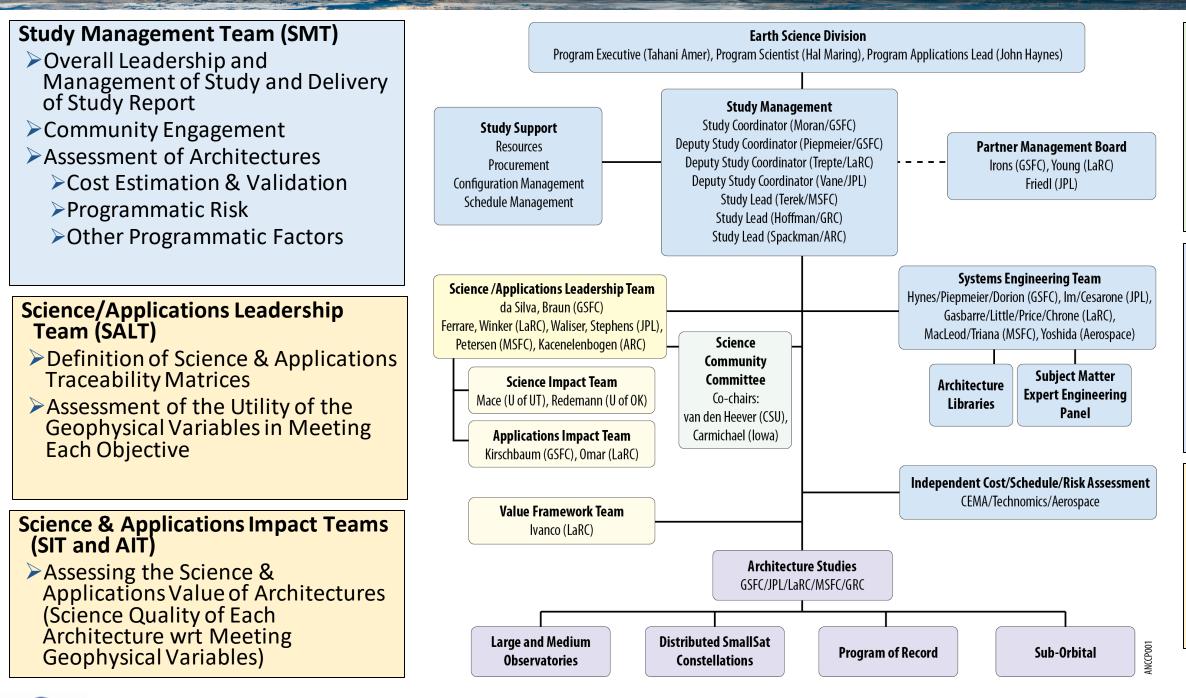

ACCP Aerosols, Clouds, Convection, and Precipitation Study

ACCP Designated Observable Multi-Center Architecture Study


Community Forum ACCP Otiar

- Study Status & Overview (15min)
- ACCP Science (15min)
- ACCP Architectures (15min)
- Scientific Assessment of Architectures (15min)
- Independent Science Community Committee (SCC) remarks (15min)
- Plan Forward & Community Engagement Opportunities (15min)
 - Sub-Orbital Working Group
 - Modeling Working Group
- Questions & Comments (30min)
 - Due to large number of people on the call, please mute your microphones and send Sheri Smith your questions or comments at <u>Sheri.L.Smith@nasa.gov</u>
 - We'll go through these at the end

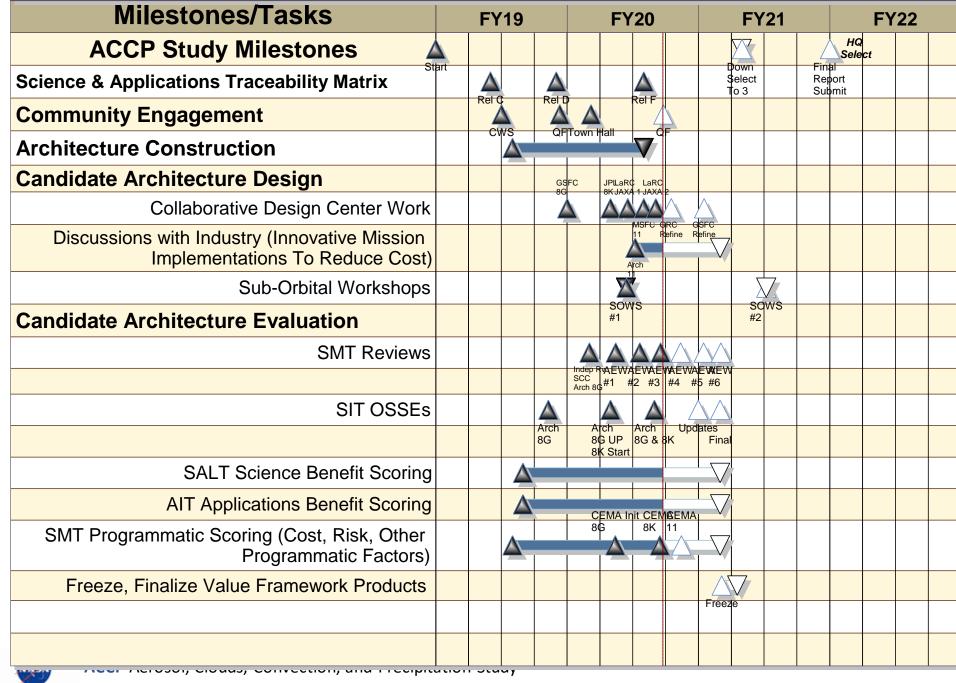
ACCP Study Team

NASA

ACCP Aerosol, Clouds, Convection, and Precipitation Study

Science Community Committee

- Independent Assessment of SATM
- Independent Assessment of Science & Applications Benefit by Community of Users


Systems Engineering Team (SET)

 Definition of Architectures
 Assessment of Architectures
 Technology Readiness
 Technical Risk

 Value Framework Team
 Development of Standard and Systematic Approach to Science, Applications, and Programmatic Evaluations of Architectures to facilitate Down-Select Decisions

ACCP Study Status/Progress & Plan FY21

ACCP Architecture Study Schedule

Freeze in Aug) Completed (Final Tweeks in Oct)

Large/Medium Spacecraft in Oct. 2019 at GSFC (Architecture 8G) ESPA Grande Spacecraft in Jan. 2020 at JPL (Architecture 8K) JAXA Large Spacecraft in Mar. 2020 at LaRC (Architecture 8G-1) ESPA Spacecraft in April 2020 at MSFC (Architecture 11s) JAXA Medium Spacecraft in May 2020 at LaRC Sub-Orbital and Ground Segment Still In Work **Architecture Evaluation In Process**

progress

.

.

- Aerospace)
- **Polarimeters**

Architecture Construction is Completed (Final

Architecture Designs (Space Segment) Nearly

OSSEs are challenging but making good

Architectures are challenging to get in **Cost Box** (doing Independent Costing with CEMA and

Instrument Technical Readiness Assessment challenging; TRA panels completed preliminary assessments for Radars, Lidars, Radiometers,

Starting to work with Industry on Innovative options to reduce Launch, SC, Gnd cost

ACCP Major Work Areas In Progress In June/July

- Lidar Special Study with French Contribution of UV Receiving Channel for a 3+2 HSRL & ACCP Trade Study All Lidar Options
 - Formal Trade Study started early March 2020
 - SIT Simulations 3 Lidars with Polar07 (2WL Back-Scatter, 2+1 HSRL, 3+2 HSRL)
 - SMT Costing: 3 Lidars including Spacecraft Accommodation
 - SET/SMT Risk Analysis 3 Lidars
 - SET Technology Readiness Assessment 3 Lidars
- ACCP JAXA Special Studies looking at including Radar 17 (Ku Band Doppler Radar) ✓ SMT--Case I Adding Radar 17 and Radar 12 in place of Radar 13 on Architecture 8G SSG Spacecraft
 - JAXA Technology Readiness Assessment
 - ✓ May 19-June 4 CDC #4 @ LaRC--Case II—Dedicated Spacecraft Bus for Radar 17
- July forming a Ground System Architecture Working Group
- SATM Development (ongoing)
 - Release F finalization
 - Discussion of how to capture Science Benefit of Sampling (diurnal and deltat)
 - Discussion of horizontal resolution for Lidar
 - Discussion of vertical time resolution for Radar
 - Discussion of Radiation measurements

Key Milestones/Upcoming Events—2020

June 16-18	Architecture Evaluation Review #3
June 22	ACCP Community Forum
July	Ground System Architecture Development
August 11-13	Architecture Evaluation Review #4 Part 1 (Architecture
Sept 1-3 (TBV)	Architecture Evaluation Review #4 Part 2 (SIT-A (Lidar/Polarimeter) Scoring per Objective)
Sept 22 or 23	HQ Annual Review
Sept 29	Next ACCP Quarterly Forum
Oct 14-15	Architecture Evaluation Review #5 (SIT-CCP Radar/Rad
	Sampling Scoring per Objective)
Dec 2-3	Architecture Evaluation Review #6 (Narratives on ACC
	Objective Scoring)
Jan 27-28	ACCP Down Select Meeting

re Freeze)

adiometer Scoring &

CP Science Flow To

6

ACCP Study Plan FY21

Milestones/Tasks	FY	′19		FY	′20		FY2 1		FY22			
Architecture Design Refinement									7			Δ
Science Write-Up & Review Architecture #1								KL	P-A	MC	; R	KDF
Science Write-Up & Review Architecture #2							\square					
Science Write-Up & Review Architecture #3								7				
Instrument & Spacecraft RFI Releases												
Architecture #1 Design & Cost Refinement												
Architecture #2 Design & Cost Refinement								7				
Architecture #3 Design & Cost Refinement												
Technical, Management & Cost Review								\square				
Final Production Report									7			
Multi-Center Executive Review									$\overline{\mathbf{A}}$			
Y22 Activities												
HQ Down Select Process & HQ Acq Strategy									7-1	7		
Pre-Phase A Study Contract Awards									4		,	
Preparation for MCR											7	кD
KDP-A (Start Phase A)												

Following Down Select To Final 3 Architectures in January 2021...

Will re-issue more specific RFIs for Instruments and Spacecraft to increase Technical and Cost Confidence

Will refine designs and costs and do Technical, Management, and Cost (TMC) Reviews with Independent Technical and Cost Teams (CEMA, RAO, Aerospace)

Will develop Instrument and Spacecraft Capabilities for Future AO/RFPs

Will include Center and HQ representatives in Reviews and Recommend 1 of 3 Architectures for Final Selection

Plan Multi-Center Executive Review(s) prior to submitting Final Report to HQ end FY21

ACCP Aerosol, Clouds, Convection, and Precipitation Study

Key Milestones/Upcoming Events—2020

March 2021 May 2021 July 2021 August 2021 September 2021 October 1, 2021

Science/TMC Review Architecture #1 Science/TMC Review Architecture #2 Science/TMC Review Architecture #3 Team Down-Select To 1 Architecture Recommendation Center/Executive Reviews **Final Report Submission**

ACCP Aerosols, Clouds, Convection, and Precipitation Study

Aerosols, Clouds, Convection, and **Precipitation (ACCP) Science**

Scott Braun¹, A. da Silva¹, R. Ferrare², M. Kacenelenbogen⁴, W. Petersen³, G. Stephens⁵, D. Waliser⁵, D. Winker², G. Mace⁶, J. Redemann⁷

> NASA Goddard Space Flight Center 2) NASA Langley Research Center) NASA Marshall Space Flight Center 4) NASA Ames Research Center 5) Jet Propulsion Laboratory 6) University of Utah 7) University of Oklahoma

ACCP Overview

The 2017 Decadal Survey (DS) recommended cost-capped missions with specified caps, creating challenge for team to envision new science but ensure an implementable observing system

	Aerosols	Clouds, Convection, and
Observable Priorities	Aerosol properties, aerosol vertical profiles, and cloud properties to understand their effects on climate and air quality	Coupled cloud-precipitation dynamics for monitoring gloud hydrological cycle and und contributing processes include feedback
Desired Observables	Backscatter lidar and multichannel, multi-angle/polarization imaging radiometer	Radar(s), with multi-freque microwave and sub-mm ra

d Precipitation

on state and global derstanding cluding cloud

lency passive adiometer

Aerosol Impacts On Clouds Weather/Climate Variability **Extreme Precipitation** Boundary Layer Processes Aerosol Speciation **Microphysical Processes Snow Accumulation Precipitation Rate and Phase High and Low Cloud Feedback Air Quality Convective Vertical Motion** Aerosol Emissions Water and Energy Cycles Radiative Forcing **Integrated Earth System Analysis** Aerosol, Clouds, Convection, and Precipitation Study

Aerosol properties Long Term Trends

Aerosol Impacts On Clouds Weather/Climate Variability **Extreme Precipitation** Boundary Layer Processes **Aerosol Speciation Microphysical Processes Precipitation Rate and Phase Snow Accumulation High and Low Cloud Feedback Air Quality Convective Vertical Motion Aerosol Emissions** Water and Energy Cycles **Radiative Forcing Integrated Earth System Analysis** erosol, Clouds, Convection, and Precipitation Study

Aerosol properties Long Term Trends

Aerosol Impacts On Clouds Weather/Climate Variability **Extreme Precipitation** Boundary Layer Processes Aerosol Speciation **Microphysical Processes Precipitation Rate and Phase High and Low Cloud Feedback Air Quality Convective Vertical Motion** Aerosol Emissions Water and Energy Cycles Radiative Forcing **Integrated Earth System Analysis** ACCP Aerosol, Clouds, Convection, and Precipitation Study

Aerosol properties **Snow Accumulation** Long Term Trends

Aerosol Impacts On Clouds Weather/Climate Variability **Extreme Precipitation** Boundary Layer Processes **Microphysical Processes** Aerosol Speciation **Precipitation Rate and Phase High and Low Cloud Feedback Air Quality Convective Vertical Motion** Aerosol Emissions Water and Energy Cycles Radiative Forcing **Integrated Earth System Analysis** ACCP Aerosol, Clouds, Convection, and Precipitation Study

Aerosol properties **Snow Accumulation**

Long Term Trends

Aerosol Impacts On Clouds Weather/Climate Variability **Extreme Precipitation** Boundary Layer Processes Aerosol Speciation **Microphysical Processes Precipitation Rate and Phase** High and Low Cloud Feedback **Air Quality Convective Vertical Motion** Aerosol Emissions Water and Energy Cycles **Radiative Forcing Integrated Earth System Analysis** erosol, Clouds, Convection, and Precipitation Study

Aerosol properties **Snow Accumulation** Long Term Trends

ACCP Science Objectives

Mission Study on Aerosol and Clouds, Convection & Precipitation

8 Science Objectives Traceable to the 2017 Decadal Survey

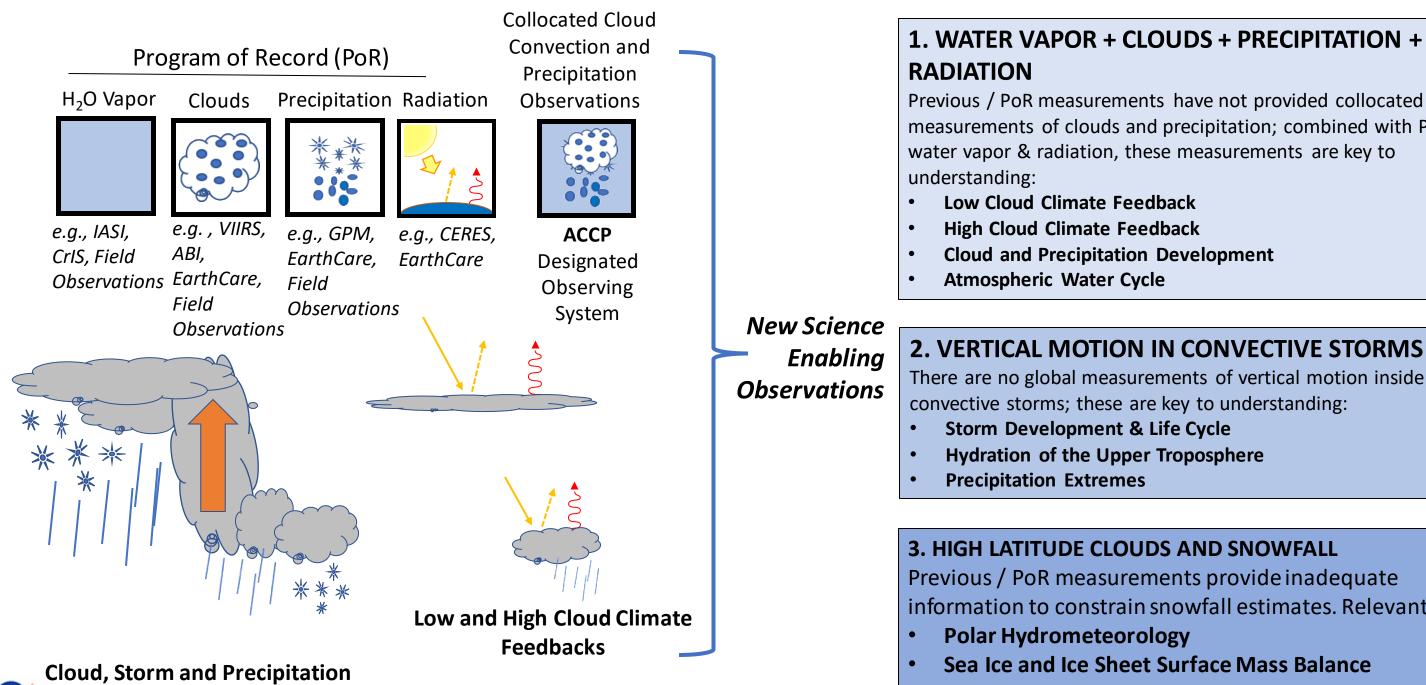
> Aerosol Absorption, Direct & Indirect Effects on Radiation 7 8

Convective Storm Feedback Systems

Aerosol Redistribution

> Aerosol Attribution & Air Quality

6

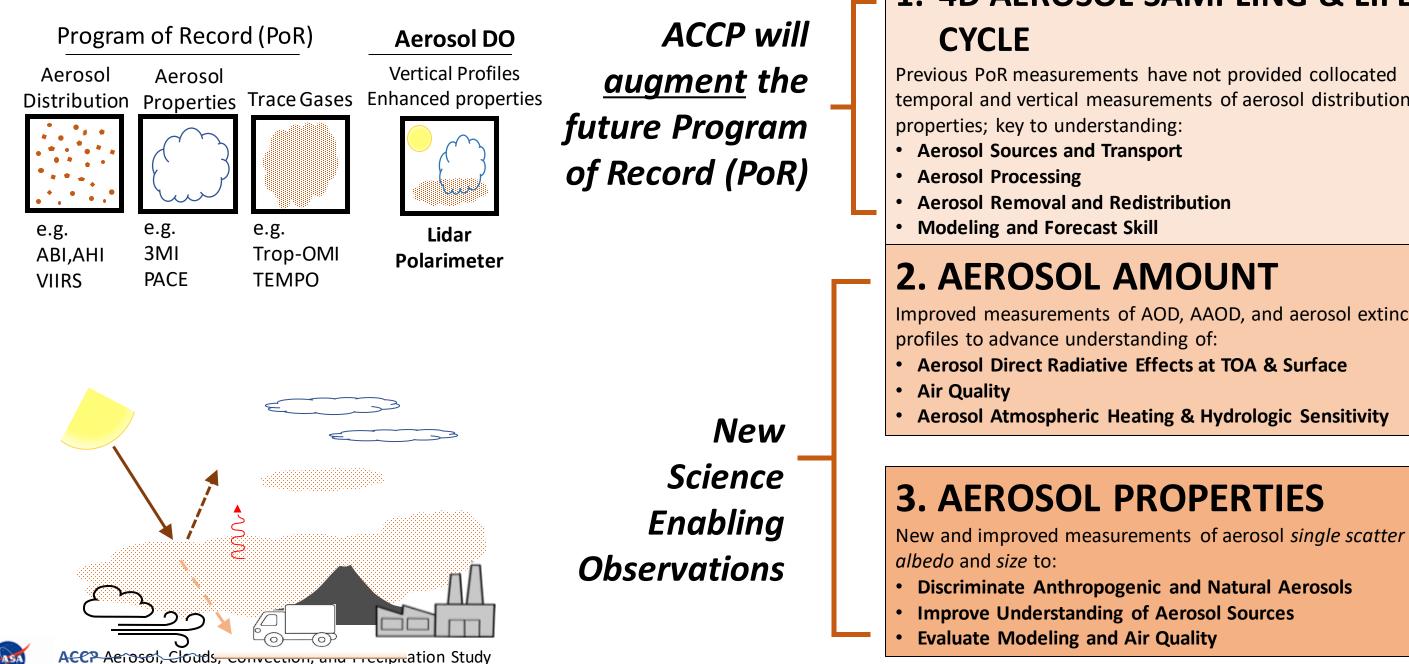


ACCP Science

High Cloud Feedback

d Cloud &

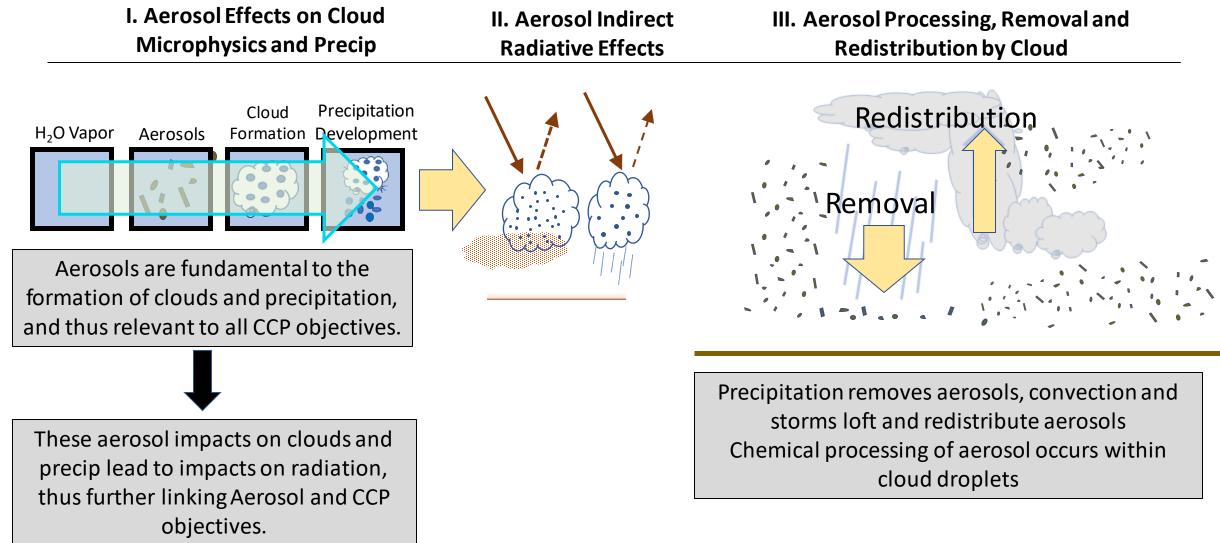
Clouds, Convection and Precipitation


Development and Lifecticies Precipitation Study

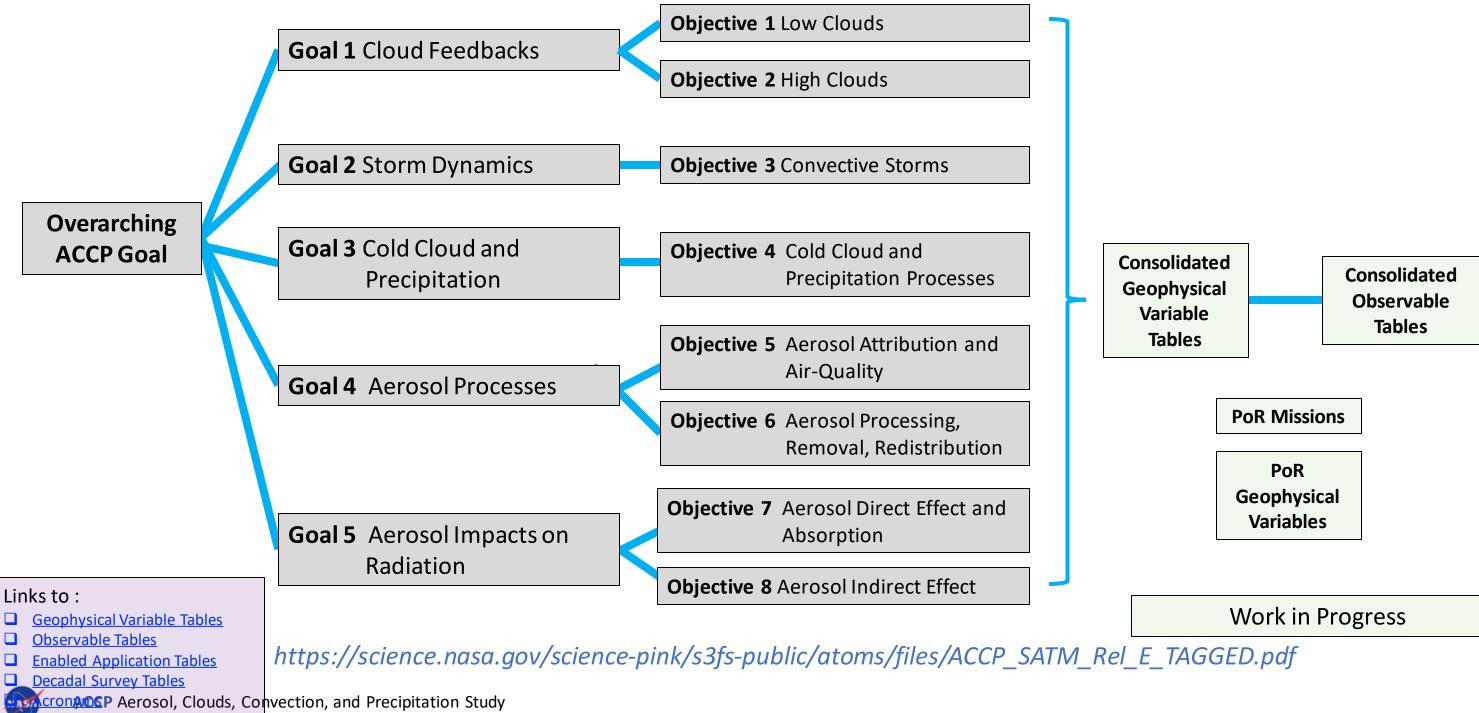
measurements of clouds and precipitation; combined with PoR

information to constrain snowfall estimates. Relevant to:

Aerosols



1. 4D AEROSOL SAMPLING & LIFE


temporal and vertical measurements of aerosol distribution and

Improved measurements of AOD, AAOD, and aerosol extinction

Links Between A & CCP

ACCP Science and Applications Traceability Matrix

Goal 2: Storm Dynamics

Atur	A	ССР	Goal	Example Science Question	Objective
			G2 <u>Storm Dynamics</u> Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within convective storms	 How does convective mass flux relate to the vertical distribution and microphysical properties of clouds and precipitation in deep convection? How do different convective storm systems contribute to vertical transports of heat, water, and other constituents within the atmosphere and how do these transports relate to storm environment and lifecycle? 	O3 <u>Convective Storm Systems</u> Minimum: Relate vertical motion we their a) cloud and precipitation strue properties, c) local environment the factors such as temperature, humid motion, and d) ambient aerosol load Enhanced: Improve measurements motion and storm characteristics in objective to better address deep convariability. Further relate items in the to latent heating profiles, storm life profiles, and surface properties.

ves

within convective storms to ructures, b) microphysical hermodynamic and kinematic idity, and large-scale vertical bading.

s of convective storm vertical in (a) and (b) of the Minimum convection and diurnal the Minimum objective fe cycle, ambient aerosol

Objectives

O3 Convective Storm Systems

Minimum: Relate vertical motion within convective storms to their a) cloud and precipitation structures, b) microphysical properties, c) local environment thermodynamic and kinematic factors such as temperature, humidity, and large-scale vertical motion, and d) ambient aerosol loading.

Enhanced: Improve measurements of convective storm vertical motion and storm characteristics in (a) and (b) of the Minimum objective to better address deep convection and diurnal variability. Further relate items in the Minimum objective to latent heating profiles, storm life

Approach

General Approach - Establish global convective structure climatologies that statistically characterize convective processes through measurement of convective scale vertical motion, cloud, precipitation, and surrounding column aerosol properties. Leverage temporal/spatial coverage of GEO and LEO PoR with groundbased observations and global/regional analysis systems.

Role of models - testing and evaluation of ACCP observational impacts on improved model physical representation of convective cloud processes.

Role of Sub-orbital - In situ and improved space-time sampling of convective processes, especially for strong to severe storms, and perturbations in the ambient cloud environment. Cal/val for satellite measurements and retrieval algorithms. **New and Improved** - a) global convective scale vertical motion profiles and correlated process metrics, and b) measurements of hydrometeor structure and environment aerosol properties, PoR measurements and capabilities, and global model analysis resolution/physics.

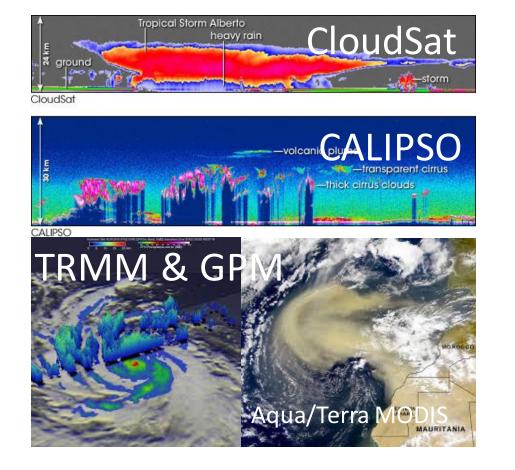
Geophysical Variables (1 of 2) Minimum Enhanced In-cloud vertical air velocity Hydrometeor vertical feature mask Cloud geometric-top temperature Cloud top phase Diurnally resolved cloud cover Diurnally resolved cloud top height **Precipitation rate Precipitation phase** Ice water path Convective classification Precipitation Discrimination (stratiform/convective) **Environmental temperature Environmental humidity** Environmental horizontal wind **Environmental vertical wind Aerosol Optical Depth**

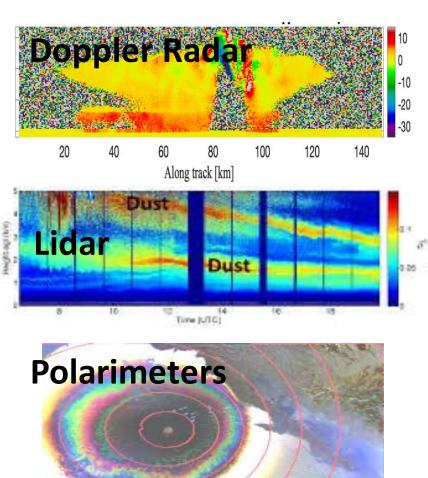
Qualifiers

- Profile, measure above melting layer at a minimum;
- Velocity minimum |>2 m/s|
- Cloud top height
- PoR Primary; Context
- PoR Primary; Context
- Profile
- Profile, liquid/ mixed/frozen
- Org./intensity/depth; PoR for org. context
- Profile, used for stability parameters as well
- Profile, used for stability parameters as well
- Profile, used for shear calculation
- Profile
- Column and PBL

Consolidated Geophysical Variable Table

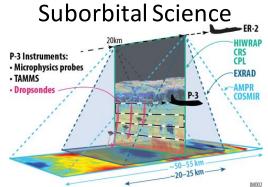
	Cons	olidated			Desire	d Capak	oility				Frablad
Ge	• •	cal Variables	Science Objectives	Pango	Uncertainty		Sca	les		Examples of Observables Notes	Enabled Apps
	(14	of 17)		Range	Oncertainty	ХҮ	Z	Т	Swath	Notes	Дррз
Minim	num	Enhanced		IMPORTANT	: Desired Ca	pabilitie	and O	bserv	ables are	preliminary. Click here for additional information	on.
PR.z	R.z Precipitation rate profile		O1, O3, O4, O6	O1: 0.1 - 2 mm/hr O3:2 - 50 mm/hr O4:.01-10 mm/hr O6: 0.1 - 2mm/hr	• · · = • • / •	3 km	250 m	I	Nadir	Radar reflectivity; µwave radiances, submm radiances	1, 5, 7
	R.z Precipitation rate profile		O2, O6	2-100 mm/hr	<100%	1 km	125 m	Ι, ΔΤ, R	≥250km	rains; Includes near surface precipitation estimate.	
			O6	0.1-2 mm/hr	100% below 1 mm/hr, 50% above	≤ 25 km	N/A	Ι, ΔΤ, R	>500 km	Scanning passive µwave, >85 GHz, Submm	
PR2D	PR2D Precipitation rate, 2D@surface		O3, O4	(O3): 0.5-50 mm/hr (O4): 0.01-10 mm/hr	O3: < 50% @1 mm/hr; < 25% @>10 mm/hr O4: 200%	≤ 25 km	N/A	ι, Δτ, R	>500 km	Contributes to horizontal mapping of precip.; Applications desires footprint of 10 km or less.	1, 5, 7, 8, 9, 10, 11

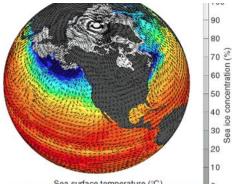




ACCP seeks to provide transformative space-based and suborbital observations of essential cloud, precipitation, and aerosol processes, leading to improved predictions of weather, air quality, and climate for the benefit of society

Continuity with the Past


Combined with Sensor Advancements of the Present



ACCP Aerosol, Clouds, Convection, and Precipitation Study

An integrated global observing system of the future

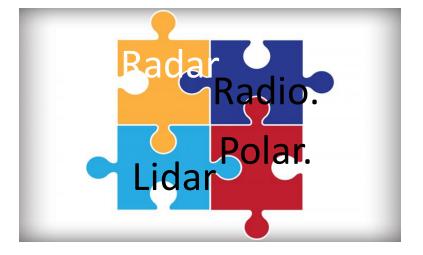
PoR

Earth System Models

Sea surface temperature

ACCP Aerosols, Clouds, Convection, and Precipitation Study

Aerosols and Clouds, Convection, and Precipitation (ACCP) Architectures


ACCP Architecture Study

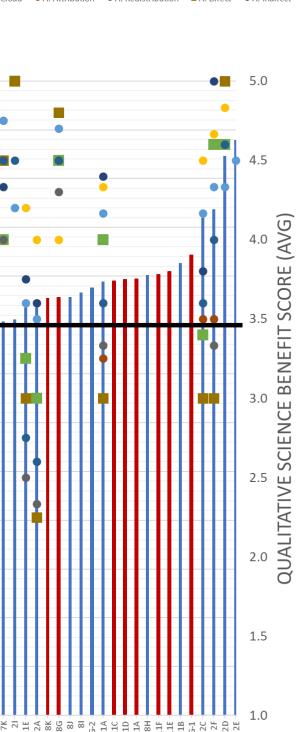
Broad range of science measurement capabilities being considered:

- Radars include W, Ka, Ku bands, Doppler and non-Doppler, scanning and nadir only
- Radiometers include cross-track and conically scanning, frequencies ranging from 10 to 883 GHz
- Lidars include 2 and 3 frequencies, backscatter and HSRL
- Polarimeters include varying channels (5 to hyperspectral) and angles (5 to 255)
- Spectrometers include VIS, NIR, SWIR, LWIR, TIR

Key science drivers to balance

- High latitude coverage
- Diurnal cycle
- Data continuity
- Radiation measurements
- Consideration of new approaches
- —Time-differencing of satellite obs

ACCP Aerosol, Clouds, Convection, and Precipitation Study


Architectures Constructed o Date (Initial Costing)

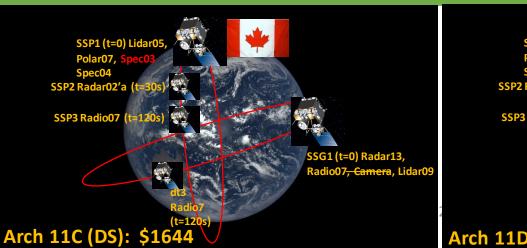
- The chart to the right provides a summary of the 45 Observing Systems that have been constructed to date
- The cost numbers were preliminary and were used for relativistic assessment
- The Science Benefit scores were preliminary and were used for relativistic assessment
- We selected the 9 Architectures in Red for deeper study which is in progress
- The 9 Architectures are associated with ~3 distinct Science Implementations

2600.0 2400.0 2200.0 2000.0 1800.0 1600. (W\$) 1400.0 1200.0 1000.0 800.0 600.0 400.0 200.0 0.0

ARCHITECTURE REFERENCE DESIGNATOR

ACW Results

1.Seasonal Vertically Resolved Cloud & Aerosol Processes At Various Times of Day


2.Seasonal Vertically Resolved Cloud & Aerosol Processes Over Several Min Time Scales for Process Evolution With De-Scopes

3.Seasonal Vertically Resolved Cloud & Aerosol Processes Over Several Min Time Scales for Process Evolution & At Various Times of Day With De-Scopes

Mission Implementations

ESPA <~160kg

1.Seasonal Vertically Resolved Cloud & Aerosol Processes At Various Times of Day Rev 2 Costing

Med Large

2.Seasonal Vertically Resolved Cloud & Aerosol Processes Over Several Min Time Scales for Process Evolution With De-Scopes

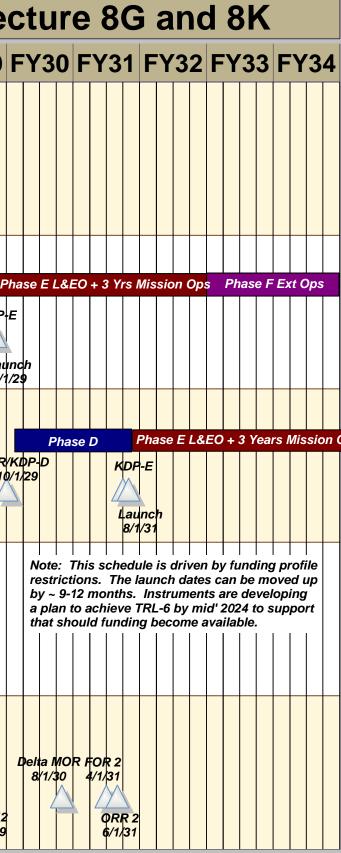
3. Seasonal Vertically Resolved Cloud & Aerosol Processes Over Several Min Time Scales for Process Evolution & At Various Times of Day With De-Scopes

Strategies

Implementation

Science

Mission Implementations


ESPA

Grande

ESPA <~160kg

ACCP Notional	ACCP Program	n High L	evel Sched	lule For	Archited
Mission	Project	FY22 FY2	23 FY24 FY25 F	Y26 FY27 I	FY28 FY29 F
Schedule Funding profile forces separate launches 2 yrs		Report Submit Phase A AO/RFP Ret KDP-A 10/1/22 HQ Select Awards	KDP-B SRR 10/1/23 KDP-B SRR Confirmati 8/1/24 8/1/25 Mission PDR	Phase C on CDR 6/1/26 3R	(DP-D
apart We need to consider	Space Segment (Launch 1Mid Lat Spacecraft; Radar13, Radio9b/10, Lidar09, Polar07)		4/1/25 Instrument In SRRs 6/1/24 Instrument PDRs	strument CDRs \$1 4/1/26 10/1	Phase D Phase
the Science Benefit of 1. the 1 st Launch assets alone	Space Segment (Launch 2Polar Spacecraft; Radar13, Radio07, Spec03, Lidar05/06, Polar07)		Z/1/25 TRL-6 Instrument SRRs 6/1/24 Instrument PDRs	Instrume CDRs 6/1/27	
 the 1 year period of overlap the 2nd Launch assets 	Sub-Orbital Campaigns		2/1/25 TRL-6		
ACCP Aerosol, Clouds, Convection, and Pre	Common Gnd Sys / Mission Ops / Data Processing / Archival		Ground Sys PDR 5/1/25	Ground Sys CDR 7/1/26	MOR FOR 1 8/1/28 4/1/29 ORR 2 6/1/29

Doppler & Lidar In Both Orbit Planes/Diurnal / No Delta t

Architecture	Radar			Lidar			Programmatic Pros	Co (* Pr
	Ка	Ku	W	2+0	2+1	3+2		
8G GPM Orbit	D		D	✓			CSA Contribution	\$1
8G Polar Orbit	D		D		\checkmark			
8G-1 GPM Orbit	D	D	ND	\checkmark			CSA & JAXA	\$1
8G-1 Polar Orbit	D		D		\checkmark		Contribution	
8K GPM Orbit	D		ND	\checkmark			CSA Contribution	\$1
8K Polar Orbit	D		D		\checkmark			
8K-1 GPM Orbit	D		ND	\checkmark			CSA Contribution	\$1
8K-1 Polar Orbit	D		D			\checkmark	CNES	
8K-2 GPM Orbit	D		ND	\checkmark			CSA Contribution	\$1
8K-2 Polar Orbit	D		D	\checkmark				

Cost *Meets Funding Profile)

51640* > Cap

1859 >> Cap

1677* > Cap

1696 >> Cap

1444* < Cap

Single Orbit Plane With Doppler & Lidar / No Diurnal / Delta t

Architecture	Radar	Radar					Delta t Method	Programmatic Pros	Cost (*Meets Funding Profile)	
	Ка	Ku	W	2+0	2+1	3+2				
11A Launch 1	D		D	✓			RadarCSA Contribution\$1542* < Cap		\$1542* < Cap	
11A Launch 2					\checkmark					
11F Launch 1	D		D	\checkmark			CNES Radiometer	CSA & CNES	\$1500* < Cap	
11F Launch 2					✓			Contribution		
11I Single Launch— Defers ACCP Science 1-2 yrs	D	D	D		•		CNES Radiometer	CSA, CNES, & JAXA Contribution CNES & JAXA in Polar Orbit Not Ideal; GPM Orbit Desired would add Diurnal	\$1528* < Cap	

Doppler & Lidar In One Orbit Plane/Diurnal / Delta t

Architecture	Radar			Lidar			Delta t	Programmatic Pros	Cost (*Meets Funding Profile)	
	Ка	Ku	W	2+0	2+1	3+2				
11B GPM Orbit	ND						Radar	CSA Contribution	\$1403* < Cap	
11B Polar Orbit	D		D		\checkmark					
11E GPM Orbit	ND	D					CNES Radiometer	CNES, CSA & JAXA	\$1698 >> Cap	
11E Polar Orbit	D		D		\checkmark			Contribution		
11C GPM Orbit	D		D				Radiometer	CSA Contribution	\$1644* > Cap	
11C Polar Orbit	ND		ND		\checkmark					
11D GPM Orbit	D		D	\checkmark			CNES Radiometer	CNES & CSA	\$1668* > Cap	
11D Polar Orbit	ND		ND		\checkmark			Contribution		
11G GPM Orbit	D		D				CNES Radiometer	CNES & CSA	\$1424* < Cap	
11G Polar Orbit	D		D		✓			Contribution		
11H GPM Orbit	D		D	\checkmark			CNES Radiometer	CNES & CSA	\$1701 >> Cap	
11H Polar Orbit	D		D		✓			Contribution		
11J GPM Orbit	D		D				CNES Radiometer	CNES, CSA & JAXA	\$1508* < Cap	
11J Polar Orbit	D	D	D	\checkmark				Contribution		

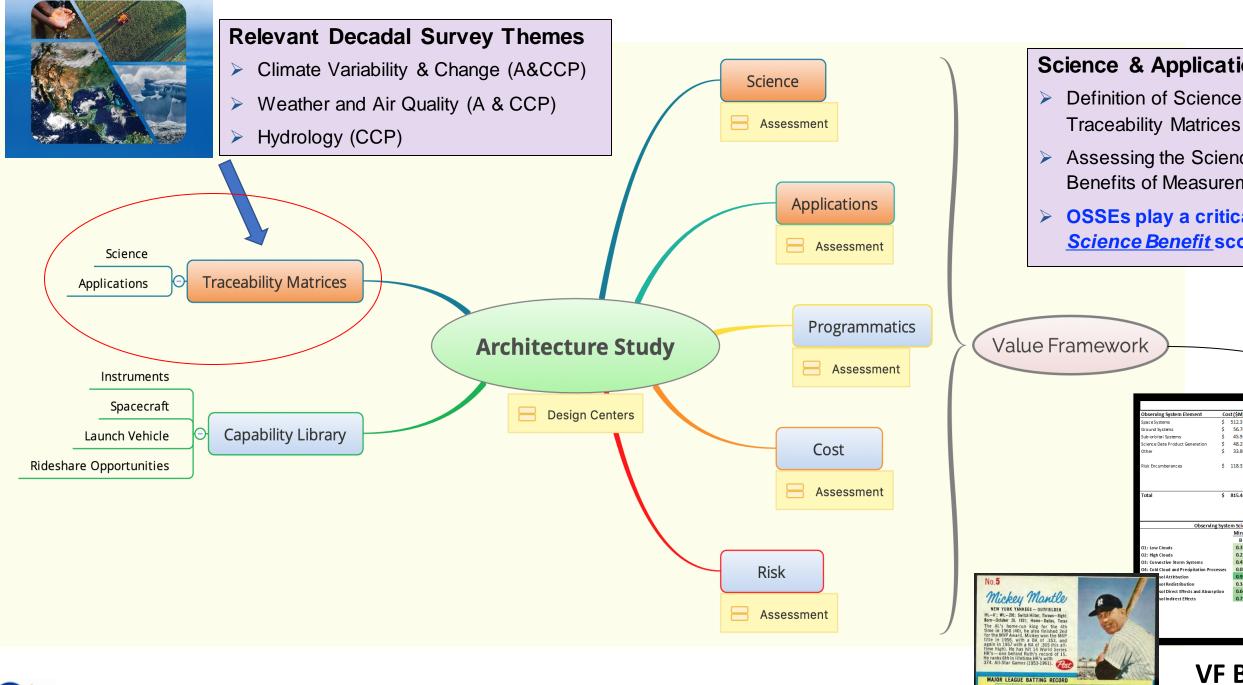
Assessment of Architectures

- Architectures 8G and 8K, 8K-1, 8K-2 have been preliminarily scored for Science Benefit; however, the simulations are still maturing to include more comprehensive and complex scenes with use cases which will provide discrimination between Lidar configurations for August 2020 Architecture Review that can be used for scoring all Architectures
 - 532/1064nm Backscatter/Polarimeter (in Architecture 8K-2)
 - 2+1 532(HSRL)/1064nm / Polarimeter (in Architecture 8K)
 - 3+2 355(HSRL)/532(HSRL)/1064nm / Polarimeter (in Architecture 8K-1)
- Programmatic aspects of Lidar Trade Study (Final Costs, Independent Technology Readiness Assessments, Risk Assessments) will conclude in July for August 2020 Architecture Review
- Science Benefit Scoring of the Radar/Radiometer combinations in Architecture 11s will conclude in October 2020.
 - These will include methods for scoring the benefit of sampling including Diurnal and Delta t measurements
- Flow down from ACCP Science Goals and Objectives to Instrument Capabilities and final Science Benefit scoring may continue into the Fall 2020 for Architectures which are possible within cost cap • Final 3 Architectures will provide different Science Emphases / Implementation Strategies within the
- cost cap

ACCP Aerosol, Clouds, Convection, and Precipitation Study

ACCP Aerosols, Clouds, Convection, and Precipitation Study

Aerosols and Clouds, Convection, and Precipitation (ACCP) Science Evaluation of Architectures


Arlindo da Silva & Scott Braun On behalf of the SALT

Based on SATM and SIT Q-scores as Compiled by Value Framework Team

> ACCP Community Forum 22 June 2020

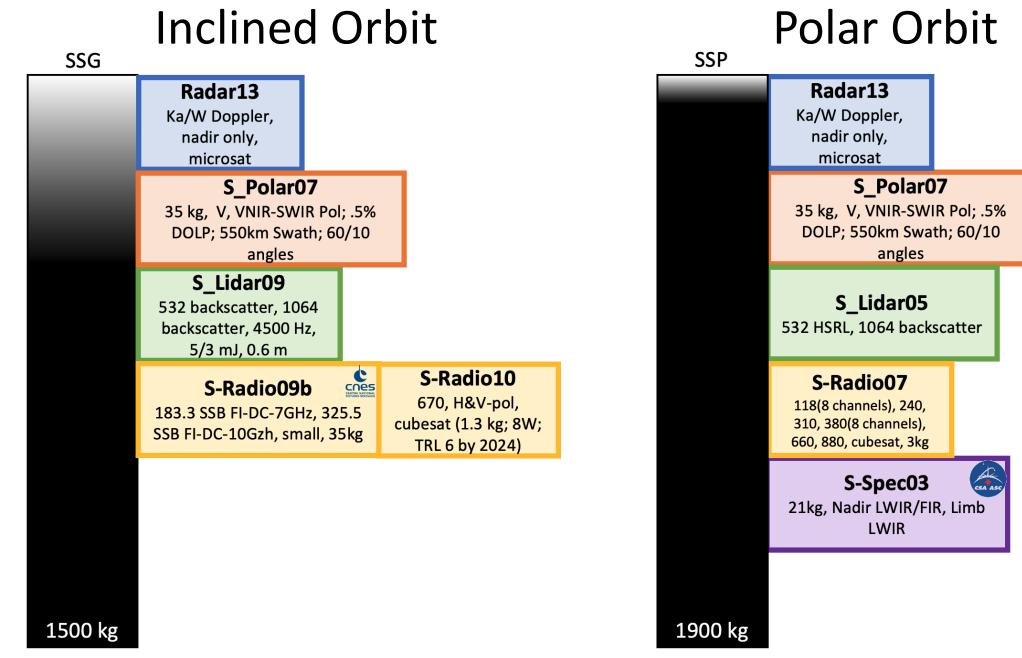
Role of Science Assessments

ACCP Aerosol, Clouds, Convection, and Precipitation Study

THRIVING ON OUR

CHANGING PLANET A Decadal Strategy for Earth Observation from Space

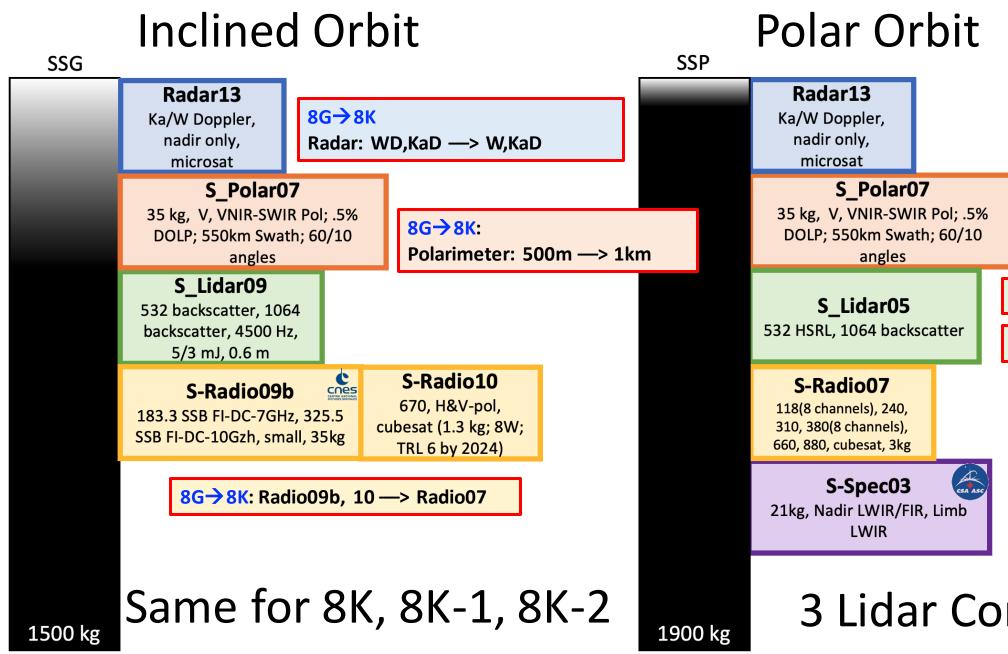
Science & Applications Activities


- **Definition of Science & Applications**
- Assessing the Science & Applications **Benefits of Measurement Architectures**
- **OSSEs play a critical role assessing the** Science Benefit scores of Architectures

				Ob	serving System I	V				
System Element	Co	ost (\$M)			Risk Key Findings	Observ	ing System I	Programmatic	Factors	
ns	\$	512.31		Key Fi	nding 1					
ems	\$	56.76				Continuity	ofObservatio	ons	Yes	5
Systems	\$	45.91		Key Fi	nding 2		lethodologie	s	Part	3
Product Generation	\$	48.28				External Pa			No	2
	\$	33.86		Key Fi	nding 3	Adaptabilit	y and Flexibil	ky 🛛		
							lity with Cost			
erances	\$	118.32	1	Key Fi	nding 4		lity with Fund	ling Profiles		
							ct Schedule			
				Key Fi	nding 5	Possibility	of Decsope O	ptions		
						Cross-bene	fit with Othe	r DOs		
	\$	815.44		Key Fi	nding 6	Multi-Cent	er Collaborat	ion 🛛		
Observing	g Syst	em Scier	ice Benef	it		Ob	serving Syst	em Applicatio	n Benefit	
		Minin	num Obje	ctive	Enhanced Objective	Sco	re ARL	So	ore ARL	
		В	All GV /	VI Min	В	PEA-1	9	PEA-8	5	
uds		0.37	Y	Y	0.06	PEA-2	4	PEA-9	3	
uds		0.22	Y		0.15	PEA-3	5	PEA-10	7	
			Y Y	Y			5 6	PEA-10 PEA-11	7	
ive Storm Systems	esses	0.22		Y	0.15	PEA-3				
ive Storm Systems ud and Precipitation Proc	esses	0.22 0.45		Y Y	0.15 0.23	PEA-3 PEA-4	6	PEA-11	4	
ive Storm Systems ud and Precipitation Proc Attirbution	esses	0.22 0.45 0.08	Ŷ		0.15 0.23 0.18	PEA-3 PEA-4 PEA-5	6 7	PEA-11 PEA-12	4 9	
ive Storm Systems ud and Precipitation Proc Attirbution Redistribution		0.22 0.45 0.08 0.95	Ý Y		0.15 0.23 0.18 0.64	PEA-3 PEA-4 PEA-5 PEA-6	6 7 8	PEA-11 PEA-12 PEA-13	4 9 9	
uds ive Storm Systems ud and Precipitation Proc Attirbution Redistribution Direct Effects and Absorp Indirect Effects		0.22 0.45 0.08 0.95 0.14	Y Y Y		0.15 0.23 0.18 0.64 0.00	PEA-3 PEA-4 PEA-5 PEA-6	6 7 8	PEA-11 PEA-12 PEA-13	4 9 9	
ive Storm Systems ud and Precipitation Proc Attirbution Redistribution Direct Effects and Absorp		0.22 0.45 0.08 0.95 0.14 0.66	Y Y Y	Y	0.15 0.23 0.18 0.64 0.00 0.34	PEA-3 PEA-4 PEA-5 PEA-6	6 7 8	PEA-11 PEA-12 PEA-13	4 9 9 6	
ive Storm Systems ud and Precipitation Proc Attirbution Redistribution Direct Effects and Absorp		0.22 0.45 0.08 0.95 0.14 0.66	Y Y Y	Y	0.15 0.23 0.18 0.64 0.00 0.34	PEA-3 PEA-4 PEA-5 PEA-6	6 7 8	PEA-11 PEA-12 PEA-13 PEA-14	4 9 6 ;h 5	

VF Baseball Cards

Low 4 N/A 0

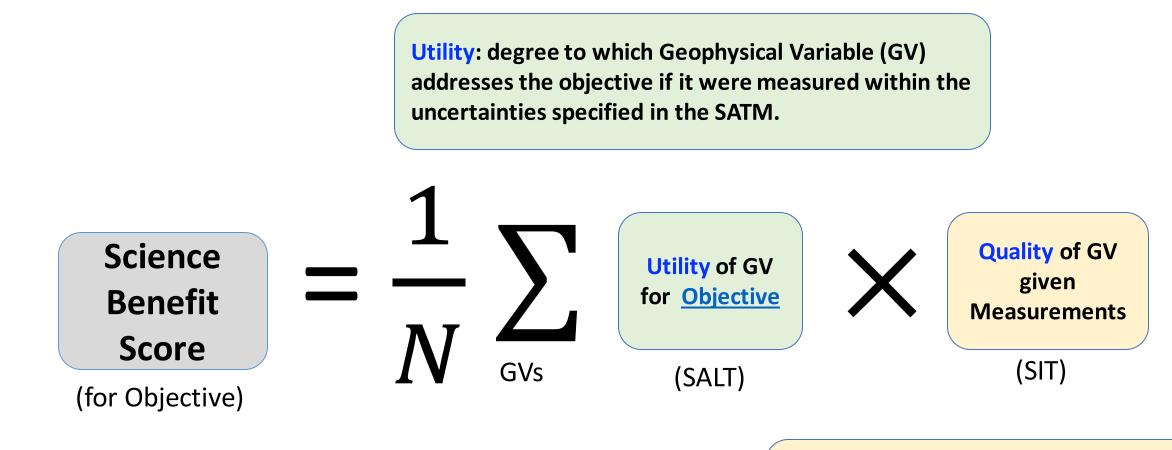

Previous Architecture 8G

ACCP Aerosol, Clouds, Convection, and Precipitation Study

37

Architecture 8K Series

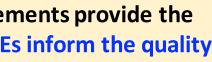
ACCP Aerosol, Clouds, Convection, and Precipitation Study


3 Lidar Configurations

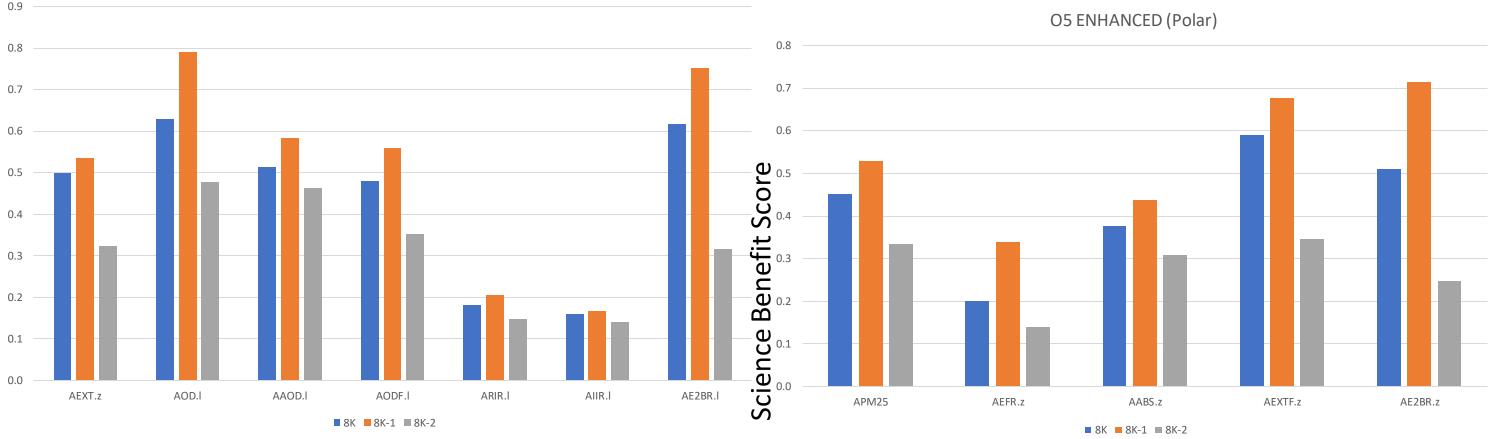
8K→8K-2: VIS HSRL → Backscatter

8K→8K-1: VIS HSRL —> UV&VIS HSRL

38


Scoring the Science Benefits of Architectures

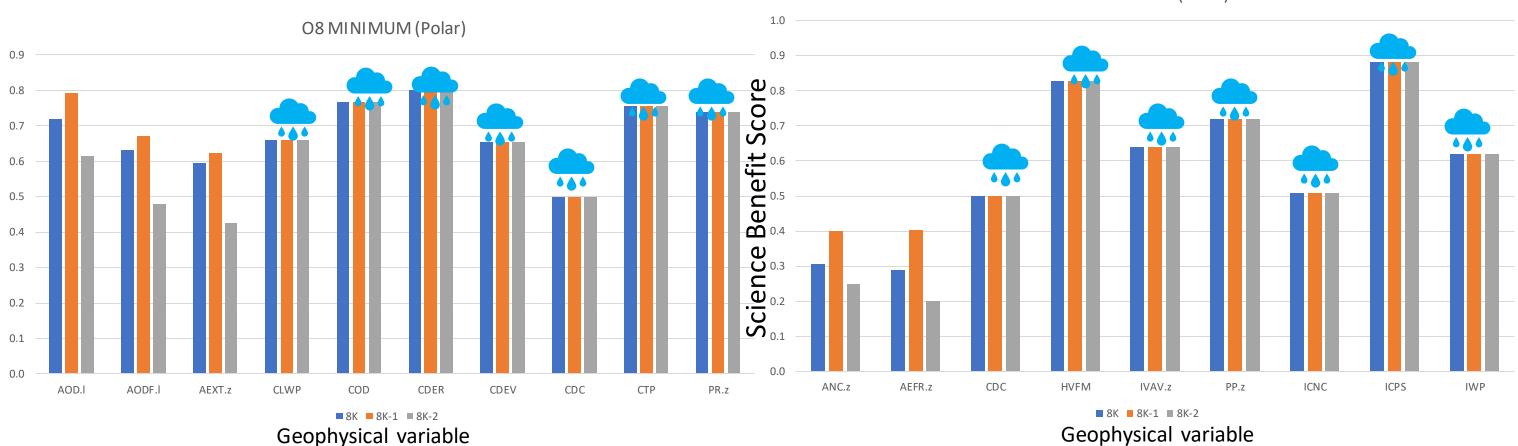
Similar to approach outlined on *Continuity of NASA Earth* **Observations from Space** report (NAS 2015)


Quality: degree to which measurements provide the desired geophysical variable. OSSEs inform the quality assessment.

Example: O5 Aerosol Attribution & AQ (Polar)

O5 MINIMUM (Polar)

Geophysical variable


Geophysical variable

Weights: Land = 0.7

Ocean = 0.3

Example: O8 Aerosol Indirect Effects (Polar)

Notice Impact of CCP Variables

Weights: Land = 0.5

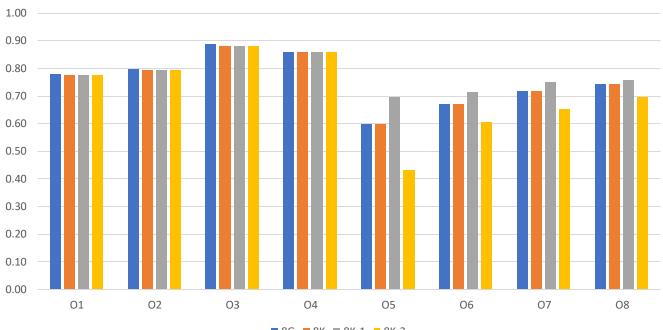
ACCP Aerosol, Clouds, Convection, and Precipitation Study

O8 ENHANCED (Polar)

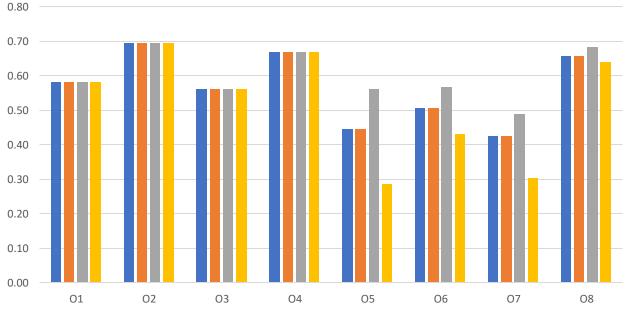
Ocean = 0.5

Summary: Polar Orbit

Minimum Objectives (Polar)



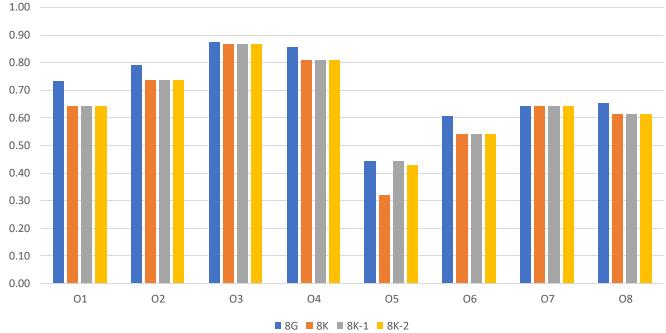
- □Essentially same score for CCP O1-O4 for all architectures
 - > Impact of Lidar on cloud not fully accessed
 - Aerosol GVs only appear in O3!
- □Scores for Aerosol O5-O8 consistent with lidar capabilities:
 - Lidar 06 (UV/VIS HSRL) slightly better than Lidar 05 (VIS HSRL)
 - Backscatter lidar shows a greater degradation of scores for 05-07
 - O8 dominated by CCP GVs!

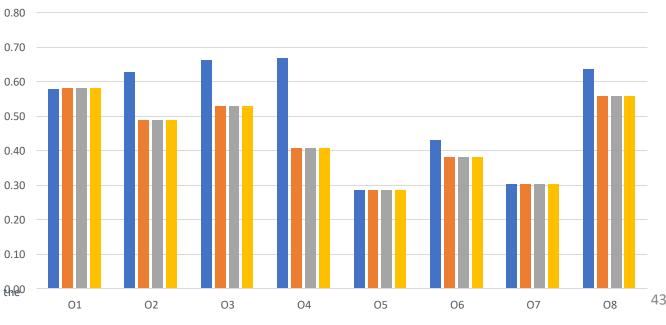

Enhanced:

□ Same scores O1-O4 scores for 8G & 8K series

Aerosol scores O5-O8 consistent with Minimum

^{■ 8}G ■ 8K ■ 8K-1 ■ 8K-2 Enhanced Science Objectives (Polar)


■ 8G ■ 8K ■ 8K-1 ■ 8K-2


42

Summary: Inclined Orbit

Minimum Science Objectives (Inclined)

Enhanced Science Objectives (Inclined)

Minimum:

- $\square 8G \rightarrow 8K$: Loss of W Doppler (and perhaps lower) spatial resolution polarimeter) impact the scores for O1, O2 & O4 (but not O3)
- $\square 8G \rightarrow 8K$: Loss of scores for O5 attributed to lower resolution polarimeter
- Otherwise, flat for 8K series as expected

Enhanced:

- $\square 8G \rightarrow 8K$: loss of W Doppler possible culprit for loss of scores for O2, O3, O4, O6 & O8
- Otherwise, flat for 8K series as expected

Preliminary Assessments

- Not every GV listed in SATM has been scored by SITs • Missing GVs were skipped in calculation of Benefit scores • It implicitly assumes that missing GV has same benefit score as the average benefit of the others
- All *Benefit Scores* reported are based on adjusted *Quality Scores* by means of "Expert Elicitation" by SIT study teams.
- Impact of different lidars on CCP 01-04 objectives have not been assessed.
- Only individual satellites (Polar and GPM-orbit) have been scored; full sampling considerations have not been included: there are no scores for when both satellites are in space.
- Realism of OSSE scenarios is *work in progress* with improvements planed for the next assessment (August 2020):
 - Clouds, non-sphericity, vertical variability, etc.
 - > Better account for spatial and temporal sample
 - \succ Explicit assessment of Δ t measurements

ACCP Aerosols, Clouds, Convection, and Precipitation Study Aerosols and Clouds, Convection, and **Precipitation (ACCP) Independent** Science Community Committee (SCC) Feedback

Updates from the SCC

Co-Chairs: Greg Carmichael and Sue van den Heever

National SCC:

Ana Barros, Andy Dessler,, Graham Feingold, Mike Fromm, Andrew Gettelman, Colette Heald, Steve Klein, Mark Kulie, Ruby Leung, Yang Liu, Johnny Luo, Allison McComiskey, James Nelson, Steve Nesbitt, Jeff Reid, Lynn Russell, Courtney Schumacher, Armin Sorooshian, and Rob Wood

International SCC:

Helene Chepfer, Yi Huang, Olivier Jourdan, Jean-François Leon, Hiro Masunaga, Rema Roca, and Kenta Suzuki

Overarching Comments: SCC – SALT - SIT Successes

- Need to properly address radiation 1.
- Consider inclined orbits 2.
- 3. Consider delta-t concepts
- 4. Need to enhance Overarching Goal
- 5. SIT-CCP graphical representations of multi-frequency Doppler capabilities and their close interactions with SCC WG O3

Overarching Comments – on Current Architectures

- Polar spacecraft with complement HSRL, polarimetry, Doppler radars, radiometer and 1. spectrometer is necessary to collectively advance all the objectives
- Inclined orbit spacecraft to enable diurnal sampling is most important to some 2. objectives, but adds significant value to all objectives.
- Delta-time capabilities extends the science significantly by extending the capabilities 3. to look at shorter time-scale processes.

Overarching Comments - Ongoing SCC Concerns

- 1. Objectives need be refined further, with narratives developed which provide specific illustrative use cases for how the measurements will be used to address the science questions associated with each objective. This will enable more meaningful evaluation of the different architectures.
- Further discussion/evaluation of the value added by Delta-time sampling. 2.
- 3. Continued efforts to refine overarching A-CCP goal to better convey how this mission will transform the science and the benefits to society.
- Moving forward more reliance on small SCC-SALT-SIT teams working more closely 4. together.
- 5. Planning modeling workshops – stay tuned for further information.

ACCP Aerosols, Clouds, Convection, and Precipitation Study

Aerosols and Clouds, Convection, and **Precipitation (ACCP) Community** Engagement

Plan Forward and Community Engagement Opportunities

• To follow ACCP activities and download materials relevant to study, check-out https://vac.gsfc.nasa.gov/accp/

Sub-Orbital Working Group

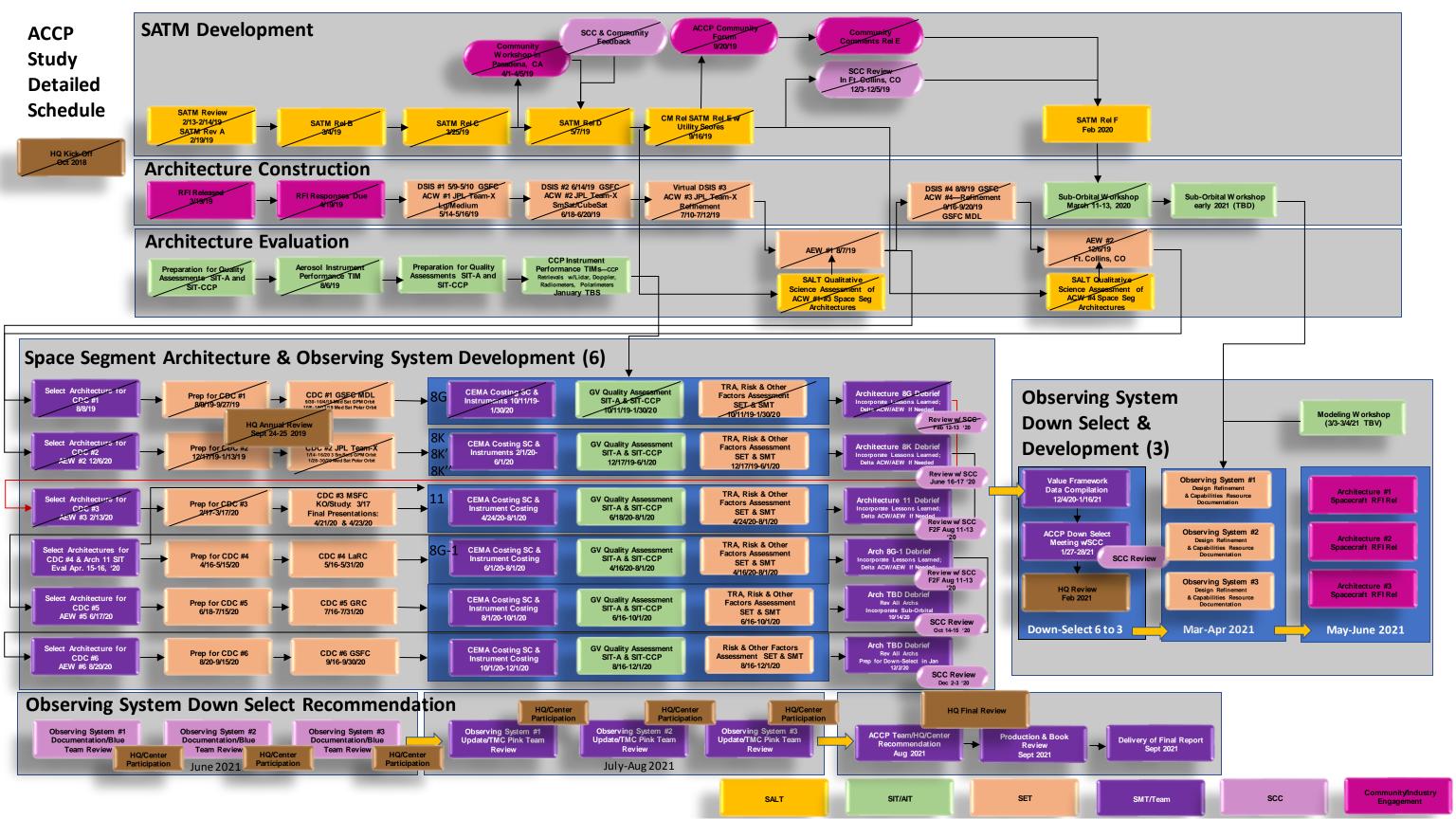
- **Strategy**: Science components, measurement approach(es)/methods, cal/val synergies •
- 1st Sub-Orbital Workshop: 3/11-3/13/2020 (Virtual)- Objective: science priorities for sub-orbital measurement element
 - Outcomes: Comprehensive list of science targets for each of 8 objectives; some common themes:
 - Coupled in situ/remote sensing linking process to dynamics; improved model physics to bridge local to global; process evolution and lifecycle; high space/time resolution; sub-cloud/near surface sampling in "satellite blind zones" (e.g., PBL); transitions between targeted environments
 - Synergies between science objectives identified;
 - Some common platform needs identified
 - Potential international contributions (sub-orbital and ground-based platforms/networks)
- **Current Activity:** Integrating science inputs across the 8 Objective templates.....
 - Combine, focus, and prioritize science inputs into a reduced set of impactful ACCP sub-orbital science targets consistent with SATM and recognizing program constraints (uncertainty in final architecture, budget etc.).
 - Synergies: [Low-Cloud, aerosol, radiation] [convection, high-clouds, radiation]
 - Distinct: Aspects of O4 (snowfall) and O5 (air quality) and O7 (DRE)
- Moving Forward: Summer- complete draft integration, consult with SALT/SCC, refine; Fall: Plan 2nd Workshop
 - 2nd Workshop: Implementation/approach focus: Given science priorities- what do approaches look like? (e.g., targeted field campaign analogues, systematic measurements ground/air, instruments etc.)
 - Larger, community meeting
 - Date : ~March 2021 (after down select); location TBD, but likely East or West Coast.

ACCP Aerosol, Clouds, Convection, and Precipitation Study

Modeling Working Group

- ACCP is planning a series of Virtual Modeling Workshops "Bringing models and observations together for Clouds and Aerosols".
 - The first will be in the Fall 2020 to
 - solicit community feedback on the architectures which best serve modeling and observational scientists prior to down-selection to final 3 architectures in January 2021
 - encourage interactions between the satellite and modeling community
 - More details will be coming from the Workshop Organizing Committee lead by Andrew Gettelman

Questions/Comments/Feedback?



Lidar Trade Study Milestones

Updated Lidar Costing (3 Lidar Types)

Estimated Completion Estimates Provided 6/8 Updates in Work (due mid' July)

Technology Readiness Assessment (TRA) Presentations To TRA Panel TRA Panel Final Report

SIT-A/SALT Updated Science Benefit Scores

6/17-6/18 (completed) due mid' July

Initial Results 6/16 (completed) Updates for August 11-13 Review

JAXA Special Study Milestones

Design Spacecraft with Radar 17/Radio07

Estimated Completion

Completed CDC #4 @ LaRC in June 4)

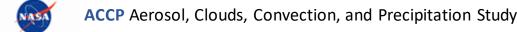
Updated Costs For Architectures with Radar 17

Preliminary Estimates 6/16 Updates in Work (due mid' July)

JAXA provide Technology Readiness Assessment for Radar 17 and plan to achieve TRL-6 by Mission PDR

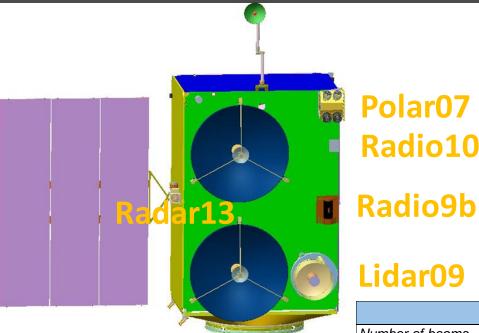
SIT-CCP/SALT Updated Science Benefit Scores

due mid' July

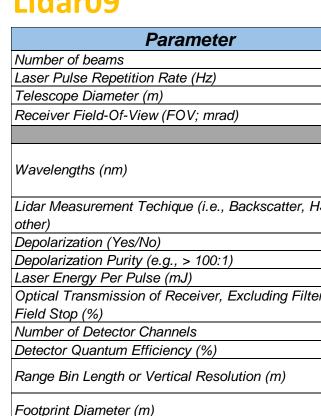

due for August 11-13 Review

Key Decision Meeting August 11-13

August 11-13 Architecture Evaluation Review


- Results of Science Benefit for JAXA Ku Doppler Radar
- Results of Science Benefit for Diurnal
- *Results of Science Benefit for Delta t Measurements*
- Update on all Architectures
- Status of Sub-Orbital Element of Observing System
 - Plans for March 2021 Sub-Orbital Workshop
- Plans for Modeling Working Group Meetings & Plans for Modeling Workshop(s)
- Decision on what to study in last CDC at GSFC in October 2020
- Plan leading up to January 2021 Decision on Final 3 Space Segment Architectures

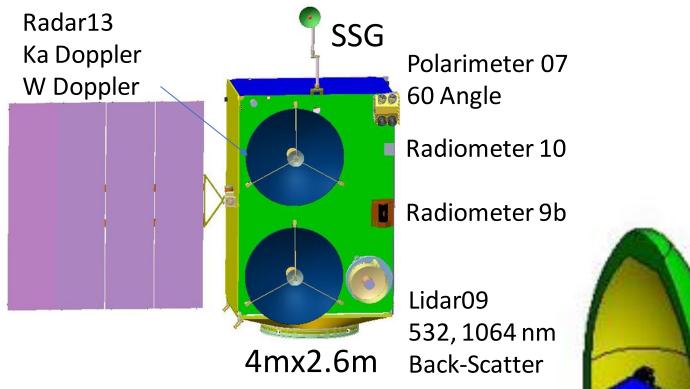
Parameter	S-Radar13
Center Frequencies (GHz)	35.6 / 94.05 (Ka / W)
Doppler Measurement (Yes/No?)	Yes / Yes
Swath Width (Km)	12.5 / NA
Range Resolution (m)	250 / 500
Horizontal Resolution @ nadir	2.5 x 2.5 (Ka)
(along-track x cross-track, km x km)	2.0 x 1.0 (W)
Horizontal Resolution @ swath edge	2.5 x 2.5 (Ka)
(along-track x cross-track, km x km)	NA (W)
Noise-Equivalent Reflectivity (dBZ) (Single-shot reflectivity at 0 dB SNR)	+17.0/-16.0
Minimum Detectable Reflectivity (dBZ) (Multi-shot reflectivity at 0 dB SNR)	+7.0 / -26.0
Reflectivity Measurement Accuracy (dB)	1.5 / 1.5
Reflectivity Measurement Dynamic Range	80 / 80
Doppler Measurement Precision (m/s) @	0.5 m/s @ 6dB SNR (Ka)
specified SNR	0.2 m/s @ 6dB SNR (W)
Doppler Measurement Unambiguous	-8.4 to +8.4 (Ka)
Range (min – max m/s)	-3.4 to +3.4 (W)
Range profiling measurement window (km) above surface	25/25


8G SSG Instruments

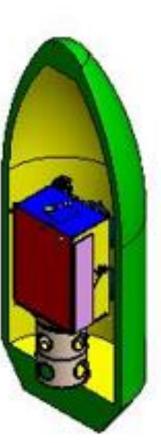
407km 65 deg incl

Parameter	S-Radio09 (b)	S-Radio10		
Center Frequencies (GHz)	183.31 GHz channel: SSB FI band: DC-7GHz 325.5 GHz channel: SSB FI band: DC-10GHz	670		
Polarization (HH, VV, HV, LCP, RCP, etc)	V or H Nadir, H or V Nadir	V, H		
Integration Time(s) (ms)	2, 1	10		
Bandwidth(s) (MHz)	7000, 10000	17000		
NEDT (K)	1 to 2, 2 to 3	0.5		
On board calibration targets	sky reflector + blackbody	cold space + black body		
Swath Width (km)	770	2000		

Polar07 Radio10


Parar

Wavelei Visible Waveler VNIR-S Radiome DOLP Stokes Spatial Cross-ti Cross-ti Along tra Number Calibrati


meter	S-Polar07
ength range	360*, 380*, 410*, 550*, 670*
ength range	870*,940*,1230*,1380*,1550
SWIR	*, 1650*
netric	3%
	0.50%
Parameters	I,Q,U
	0.5 cross
rack swath (km)	550
rack swath (deg	72
rack viewing	±57º at spacecraft
r of Angles	60 at 670nm, 10 at others
tion	on-board rad & pol

		S-Lidar09					
	1						
		4500					
		0.6					
		125					
	l1 (nm)	l2 (nm)	I3 (nm)				
	1064	532					
ISRL,							
	Backscatter	Backscatter					
	Yes	Yes					
	>100:1	>100:1					
	3	2					
ers, and	60%	60%					
	2	4					
	2	60%					
	30-60	30-60					
	28-42	28-42					

Architecture 8G SSG Fact Sheet

Launch Options: ACCP Single SC Dedicated or Shared Ride with Another Program on ESPA Grande & Falcon-9 to 65 deg Inclined Orbit

	Dry Mass/Fuel kg	Load Power W
SSG SC	1103/304	420
Payload		
Radar13	44.2	78
Lidar09	74.1	341.9
Polar07	61.1	59.8
Radio9b	45.5	48.1
Radio10	1.69	10.4
Total P/L	227	538

Total Obs Mass=1634kg; Pwr=958W

Parameter	S-Radar13				
Center Frequencies (GHz)	35.6 / 94.05 (Ka / W)				
Doppler Measurement (Yes/No?)	Yes / Yes				
Swath Width (Km)	12.5 / NA				
Range Resolution (m)	250 / 500				
Horizontal Resolution @ nadir	2.5 x 2.5 (Ka)				
(along-track x cross-track, km x km)	2.0 x 1.0 (W)				
Horizontal Resolution @ swath edge	2.5 x 2.5 (Ka)				
(along-track x cross-track, km x km)	NA (W)				
Noise-Equivalent Reflectivity (dBZ) (Single-shot reflectivity at 0 dB SNR)	+17.0/-16.0				
Minimum Detectable Reflectivity (dBZ) (Multi-shot reflectivity at 0 dB SNR)	+7.0 / -26.0				
Reflectivity Measurement Accuracy (dB)	1.5 / 1.5				
Reflectivity Measurement Dynamic Range	80 / 80				
Doppler Measurement Precision (m/s) @	0.5 m/s @ 6dB SNR (Ka)				
specified SNR	0.2 m/s @ 6dB SNR (W)				
Doppler Measurement Unambiguous	-8.4 to +8.4 (Ka)				
Range (min – max m/s)	-3.4 to +3.4 (W)				
Range profiling measurement window (km) above surface	25/25				

8G SSP
Instruments

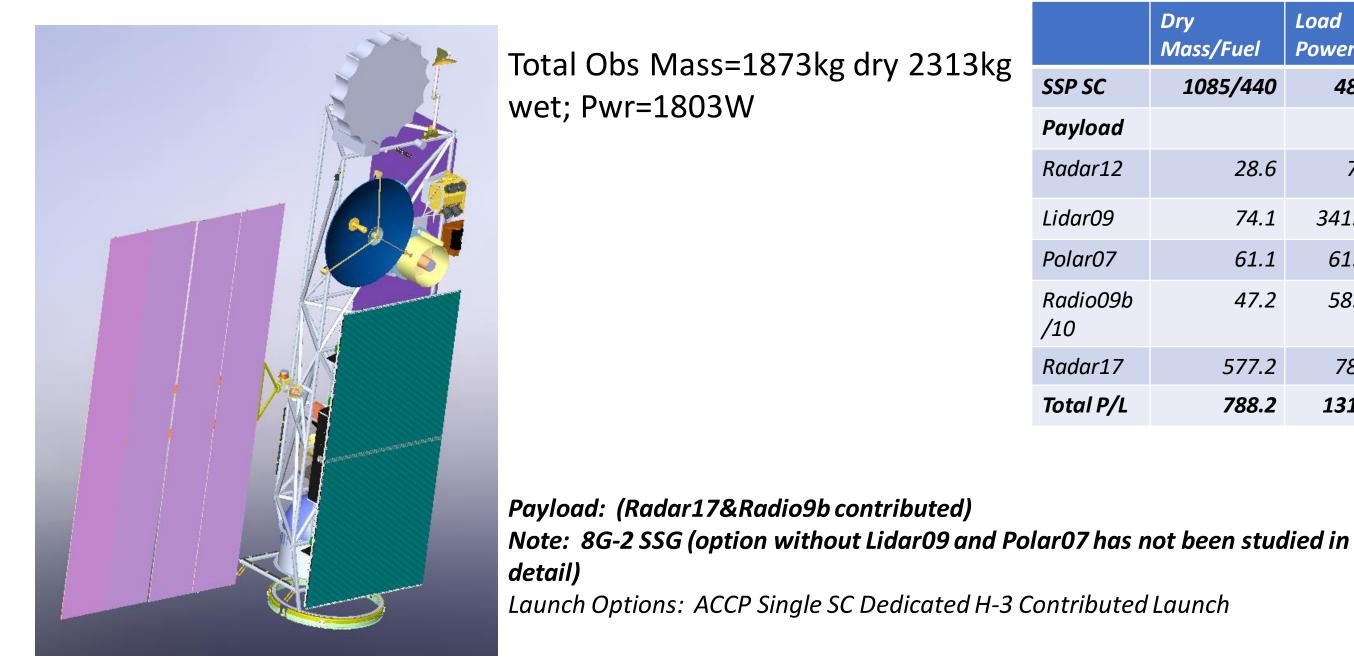
Parameter	S-Polar07				
Wavelength range Visible	360*, 380*, 410*, 550*, 670*				
Wavelength range	870*,940*,1230*,1380*,1550				
VNIR-SWIR	*,1650*				
Radiometric	3%				
DOLP	0.50%				
Stokes Parameters	I,Q,U				
Spatial	0.5 cross				
Cross-track swath (km)	550				
Cross-track swath (deg	72				
Along track viewing	±57º at spacecraft				
Number of Angles	60 at 670nm, 10 at others				
Calibration	on-board rad & pol				

Radar13

450km

1:30p.m.

Polar Sun Sync

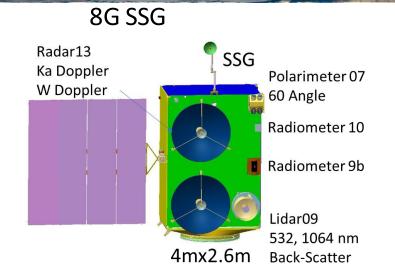

Parameter	S-Lidar05				
Number of beams	1				
Laser Pulse Repetition Rate (Hz)		70			
Telescope Diameter (m)		1			
Receiver Field-Of-View (FOV; mrad)	TBD by the	SALT. Currei	ntly		
Wavelengths (nm)	l1 (nm)	l2 (nm)	13 (nm)		
	1064	532			
Lidar Measurement Techique (i.e., Backscatter, HSRL,					
other)	Backscatter	HSRL			
Depolarization (Yes/No)	Yes	Yes			
Depolarization Purity (e.g., > 100:1)	250:1	250:1			
Laser Energy Per Pulse (mJ)	125	125			
Optical Transmission of Receiver, Excluding Filters, and Field Stop (%)	35%	37%			
Number of Detector Channels	2	3			
Detector Quantum Efficiency (%)	40%	25%			
Range Bin Length or Vertical Resolution (m)	60	1			
Footprint Diameter (m)	93	93			

	Parameter	S-Spect03
	Spectral Regions (e.g., UV, VIS, SWIR)	LWIR, FIR
	Wavelengths of channel(s) (µm)	8.7, 11, 13, 17.75, 19.5, 21.5, 25, 40
	Channel bandwidths for radiometry (µm)	1.6, 2, 2, 1.5, 2, 2, 5, 20
Radio07	Cross-track swath width seen in common at all view angles (km)	400
Lidar05	Instantaneous cross-track field of view (deg)	0.44 deg (single pixel, iFOV), 35.2 deg FOV
Spec03	Footprint per pixel at nadir, center of field (cross-track x along-track) (i.e., best case)	5km x 5km
Spec03 Polar07	Footprint per pixel at most oblique view angle, edge of field (cross-track x along-	~7.5 km x 5 km
	Along-track spatial coverage (continuous, intermittent, targeted) (km)	100 km (along-track, continuous)
	Radiometric calibration technique (e.g., on- board, vicarious)	warm black body on- board (310 K), deep space view needed

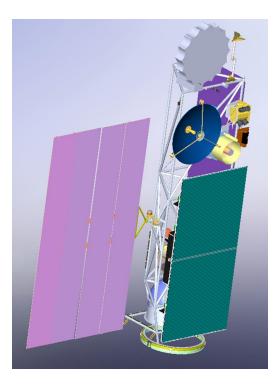
Parameter	S-Radio07		
Center Frequencies (GHz)	118 +/- 1.1, +/- 1.5, +/- 2, +/- 5, 183 +/- 1, +/- 2, +/- 3, +/- 6, 240, 310, 380 +/-0.75, +/-1.5, +/-3, +/-6, 660, 880		
Polarization (HH, VV, HV, LCP, RCP, etc)	H (all channels)		
Integration Time(s) (ms)	10 (118 & 183 channels)		
Bandwidth(s) (MHz)	400, 400, 10000, 10000, 400,		
NEDT (K)	0.5 (118 & 183 channels)		
On board calibration targets	blackbody, cold sky		
Swath Width (km)	750		

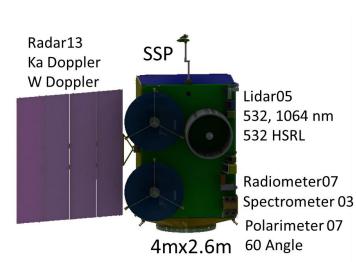
Parameter	S-Rad	dar12		S-Radar17	8	G-1 SS(<u> </u>			
Center Frequencies (GHz)	35.6 / 94.05	5 (Ka / W)		13.6 (Ku)						
Doppler Measurement (Yes/No?)	Yes	s / No		Yes	Ins	trumen				
Swath Width (Km)		5 / NA		10 (Doppler) h lat & polar, non-Doppler) w & mid lat, non-Doppler)			Parameter	S-Polar0)7	
Range Resolution (m)	250 /) / 500		500			Wavelength range . Visible	360*, 380*, 410*, 55	50*, 670*	
Horizontal Resolution @ nadir	2.5 x 2	2.5 (Ka)	2	2.5 x 5.0 (Doppler)			Wavelength range	870*,940*,1230*,13	.380*.1550	
(along-track x cross-track, km x km)	2.0 x 1.	.0 (W)		0 x 5.0 (non-Doppler)		Polar07	VNIR-SWIR Radiometric	*,1650*		
Horizontal Resolution @ swath edge	2.5 x 2	2.5 (Ka)		2.5 x 5.0 (Doppler)		Radio10	Radiometric DOLP	0.50%		
(along-track x cross-track, km x km)	NA (· · ·		high lat & polar, non-Doppler)		4	Stokes Parameters	<i>0.50%</i> <i>I</i> ,Q,U		
				(low & mid lat, non-Doppler)		Radio9h	Stokes Parameters Spatial	0.5 cross		
Noise-Equivalent Reflectivity (dBZ)	+17.0) / -16.0		+8.1 (nadir)			Cross-track swath (km)			
(Single-shot reflectivity at 0 dB SNR)	1	, 	+0.2/+*	1.7 (polar/low & mid lat)		jdar09	Cross-track swath (deg			
Minimum Detectable Reflectivity (dBZ)	+7.0/	/ -26.0		-2.6 (nadir)			Along track viewing	±57° at spaced	oraft	
(Multi-shot reflectivity at 0 dB SNR)	1	· · · · · · · · · · · · · · · · · · ·	-8.9/-7	7.2 (polar/low & mid lat)			Number of Angles	60 at 670nm, 10 a		
Reflectivity Measurement Accuracy (dB)	1.5	5/1.5		1			Calibration	on-board rad &		
Reflectivity Measurement Dynamic Range	80 /	/ 80		80						
Doppler Measurement Precision (m/s) @	0.5 m/s @ 6d	dB SNR (Ka)	1.0 (hig/	gh lat & polar, 10dB SNR)			Parameter		S-Lidar09	
specified SNR	NA ((W)	1.9 (lov	ow & mid lat, 10dB SNR)		Number of beams	····		1	
Doppler Measurement Unambiguous	-8.4 to	+8.4 (Ka)	1	-52 to +52	Radar17	Laser Pulse Repetition Rate (Hz)			4500	
Range (min – max m/s)	NA (()				Telescope Diameter (m)	1		0.6	
Range profiling measurement window	25/	. ,	10 (high l	lat & polar, Doppler & non-		Receiver Field-Of-View ((FOV; mrad)		125	
(km) above surface	1	,		Doppler)						
Parameter	r	S-Radio	09 (b)	S-Radio10		Wavelengths (nm)		11 (nm)	l2 (nm)	13 (nm)
		1					································	1064	532	
	I.	183.31 GHz cha		1			chique (i.e., Backscatter, HSR		Deskoootto	
Center Frequencies (GHz)	I.	SSB FI band:		670		other)	1	Backscatter		
	F	325.5 GHz chan				Depolarization (Yes/No)	/	Yes	Yes	
	ļ	SSB FI band:	. DC-10GHz	1		Depolarization Purity (e.g	· · · · · · · · · · · · · · · · · · ·	>100:1	>100:1	
Polarization (HH, VV, HV, L	(CP RCP etc)	V or H Nadir I	Hor V Nadir	V, H		Laser Energy Per Pulse (mJ) Optical Transmission of Receiver, Excluding Filters, and		and 3		
Integration Time(s) (ms)	51, NOF, 515,	2, 1		10		Field Stop (%)	Receiver, Excluding r mors, a	, and 60%	60%	
Bandwidth(s) (MHz)	+	7000, 10		17000	65 deg incl	Number of Detector Cha	annela	2	4	+
NEDT (K)	t	1 to 2, 2		0.5		Detector Quantum Efficie		2	60%	
On board calibration targets	3	sky reflector +		cold space + black body						+
Swath Width (km)		770		2000		Range Bin Length or Ver	ertical Resolution (m)	30-60	30-60	
						Footprint Diameter (m)		28-42	28-42	

Architecture 8G-1 SSG Fact Sheet



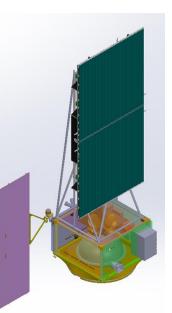
ACCP Aerosol, Clouds, Convection, and Precipitation Study


ı ss/Fuel	Load Power
1085/440	484
28.6	78
74.1	341.9
61.1	61.1
47.2	58.5
577.2	780
788.2	1319

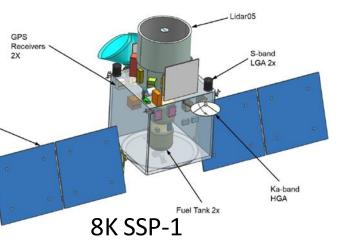

Large / Medium Spacecraft Summaries—Stacked/Dedicated

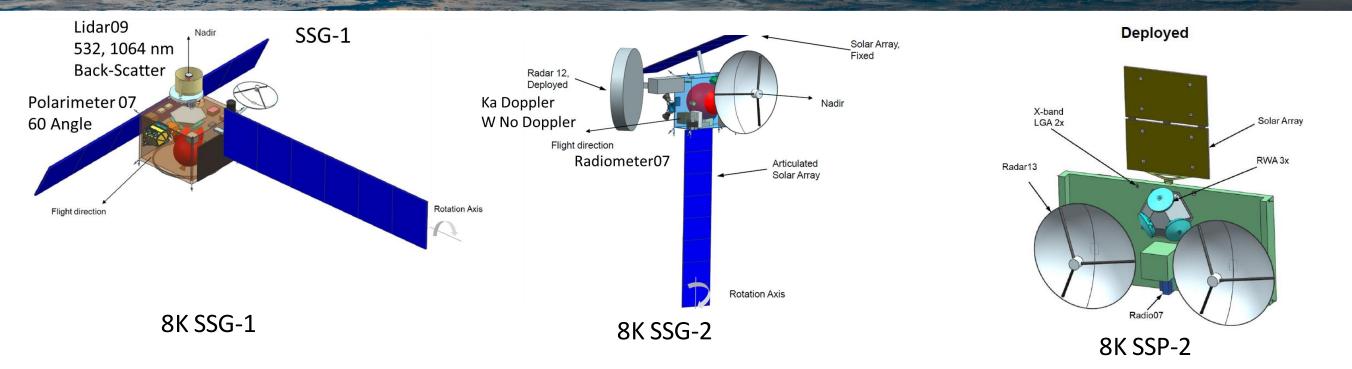
Launches

8G-1 SSG 8G-2 SSG—without Lidar/Polarimeter



8G SSP

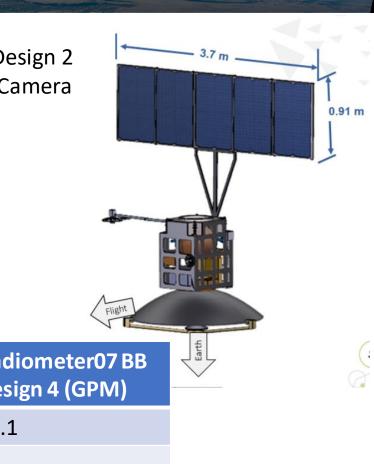

8G-1 111 8G-2 **11E** 8G SSP, 8K SSP-1; SSG SSP1 SSG SSG-1 11B, 11E 11A/C/D/F/ (JAXA Case (JAXA Case (JAXA Case (JAXA Case H/8K-1;8K-1) 2) 1 Variant) 2) 2 Payload 788 651 623 655 607 558.4 Mass Payload 1318 968 906 828 932 838 Power ACCP Aerosol, Clouds, Convection, and


11E SSG-1

Deployed

ESPA Grande Spacecraft (<320kg) Summaries

	8K SSG-2	8K SSP-2	8K SSG-1	8G SSG	11A, 11F
Payload Mass	32.5	48.1	101.4	227	245-300
Payload Power	94	94	402	538	630-677



ESPA Small Spacecraft (<182kg) Summaries

3.7 m	Ra Ra	aby Bird Design 1 adar05b/Camera olar			Baby B Radarû GPM C)5b/Ca
3.1 m			Radar05b/Camera BB Design 1 (Polar)	Radar05b/Camera BB Design 2 (GPM)	Radiometer07 BB Design 3 (Polar)	Rad Desi
		Payload Mass	101.4	32.5	48.1	48.1
	0.91 m	Payload Power	402	94	94	94
Flight	Baby Bir Radiome Polar	d Design 3/4 eter07				

ACCP Aerosol, Clouds, Convection, and Precipitation Study

