U.S. NAVAL RESEARCH

Monitoring of Volcanic Eruptions, Pyrocumulonimbus (PyroCb), and Ensuing Impacts on the UTLS Worldwide

David Peterson

U.S. Naval Research Laboratory – Monterey, CA

Edward Hyer, James Campbell, Chris Camacho Mike Fromm, Pat Kablick Melinda Berman Rick McRae Ghassan Taha Chris Schmidt Matt DeLand William Julstrom, Jun Wang Naval Research Laboratory - Monterey, CA Naval Research Laboratory - Washington, DC University of Illinois at Urbana-Champaign ACT Emergency Services Agency, Canberra, Australia Universities Space Research Association, NASA-Goddard University of Wisconsin - Madison Science Systems and Applications, Inc. University of Iowa

Many contributions from members of the FIREX-AQ Science Team

NASA AOS Applications Seminar, 27 October 2022

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Pyrocumulonimbus (PyroCb) Dangerous & Severe Type of Fire Weather

Near-fire, Firefighting:

- Erratic wind behavior near fires, enhanced spotting
- Extreme fire whirls likely
- Lightning strikes can ignite new fires

Aviation:

- Airborne fire suppression impossible
- PyroCbs may not appear hazardous in aircraft radar displays. Pilots might inadvertently fly into storm core.

Smoke Transport:

- Smoke injected at and above aircraft cruising altitudes
- No prediction available for long-distance smoke transport induced by pyroCbs

Climate:

- PyroCbs often inject smoke into the stratosphere
- Plume magnitude can rival volcanic eruptions
- Potential feedbacks on radiative forcing, ozone loss, dynamic circulation, etc.

2021 PyroCb Season 83 PyroCbs in North America, 100 Worldwide

"Monster PyroCb" (30 June)

U.S. NAVAL

RESEARCH

Largest known pyroCb outbreak in North America (15 July)

2021/06/30 21:20:31Z NRL-Monterey

New Class of Large Smoke Plumes in the Stratosphere 2017 Pacific Northwest Event (PNE)

Australian New Year Super Outbreak (ANYSO) Phase #1: 29-31 December 2019

HIMAWARI8 AHI PyroCb-Standard 2019/12/29 00:00:00Z NRL-Monterey

Peterson et al. 2021 (Nature PJ, Climate & Atmos. Sci.)

- longest duration of near-continuous pyroCb activity
- 33 pyroCbs observed over ~45 hr ٠
- PyroCbs developed both during day and night
- Total stratospheric aerosol mass: 0.2 0.8 Tg
- Largest smoke particle injection on record! •

Stratospheric Plume: GOES-17 1/2/20 (18:40 UTC)

U.S.NAVAL RESEARCH

Significant Stratospheric Aerosol Particle Injections

Quantity of smoke aerosol mass injected into the stratosphere?

U.S. NAVAL RESEARCH

Ultra-Violet Aerosol Index (UVAI):

- Ozone Mapping Profiler Suite (OMPS)
- Sensitive to altitude of light-absorbing smoke aerosols
- AI exceeded all known pyroCb & volcanic plumes!

Stratospheric plume area:

- Lidar (CALIOP) vertical profiles required!
- Derive an UVAI threshold for stratospheric aerosol: AI > 15

Nascent stratospheric plume area nearly 800,000 km²

Peterson et al. 2018 (Nature PJ, Climate and Atmos. Science) 7

Stratospheric Aerosol Mass Calculations

Total mass injection = mass density x stratospheric plume volume

Mass Density $= \frac{\beta R}{\varepsilon}$

β: Lidar backscatter (m⁻¹sr⁻¹)
ε: Smoke mass extinction coefficient (m²kg⁻¹)
R: Lidar ratio (sr), extinction-to-backscatter

Methods:

- Range of values used for ϵ and R
- Account for potential mix of smoke particles, water/ice, and mineral dust

Results:

- Smoke mass density: 73-220 $\mu g\ m^{\text{-}3}$
- Total stratospheric aerosol mass: 0.1 to 0.3 Tg

4.0

0.0

Comparison and Potential Interaction with Volcanic Plumes

OMPS LP stratospheric aerosol optical depth (sAOD)

12.0

16.0

20.0

8.0

- Two of the five largest plumes since 2012 are from pyroCbs
- 2019-2020 featured the highest levels of sAOD during the entire 25 year, post-Pinatubo era:
 - ANYSO played a significant role
 - Impact from additional pyroCb activity in N. Hemisphere?
- Potential interactions between pyroCb smoke and sulfate-based volcanic plumes?

Diabatic Lofting of Smoke in the Stratosphere

Multiple Injections = Complex Plume in the Stratosphere

- Considerable diabatic lofting from absorption of solar radiation
- Smoke "blob" observed up to 30 km by early February (Dec. injection)
- Transport speed and direction changed with smoke altitude
- Evolution of the blobs vs. diffuse smoke layers?

PyroCb Smoke Plumes Affect Dynamic Circulation 20 January 2020

Absorbing smoke layers generate anticyclonic circulations in the lower stratosphere...

Recent discoveries via Aura MLS, SAGEIII/ISS, OMPS and other sensors:

- 1. Rapid vertical transport of contained circulation anomalies can displace local ozone
- 2. Anomalies of stratospheric ozone from heterogeneous chemistry on smoke particle surfaces

Kablick et al. 2020; Rieger et al. 2021; Santee et al. 2022; Solomon et al. 2022; Bernath et al. 2022

Blow-Up Fires Contributing to a PyroCb Super Outbreak Requires NASA Fire Detections

What is a "blow-up fire"?

- Rapid increases in rate of spread and intensity
- Significant vertical smoke plume growth that extends above the planetary boundary layer

Unprecedented fire activity

- Australia's "Black Summer" fire season burnt a record area of land, including 109 significant blow-up fires
- ANYSO was driven by 13 fire blow-ups:
 - Burned 530,000 ha, larger than Delaware (land area)
- Energy release of approximately 1.3-5.1 x 10¹¹ MJ
- 2,000 times the Hiroshima atomic explosion
- PyroCb activity was extremely complex:
- Divided into 18 smaller pyroCb "sub-events"
- Individual pyroCb pulse or chain of several "pulses" anchored to one of the 13 blow-up initiation points

Convective Cloud Properties and MISR Plume Heights

Convective Cloud Study (Kablick et al. 2018) MODIS + CALIPSO + CLOUDSAT

PyroCb Plume Altitude (Fromm et al. 2021)

MISR stereo heights

PNE Plume, 13 Aug. 2017

VIIRS Day/Night Band (DNB) Tracking pyroCb smoke plumes at night

Fromm et al. 2021

U.S.NAVAL RESEARCH

LABORATORY

NRL PyroCb Inventory

Location of 546 pyroCbs during 2013-2021

U.S. NAVAL RESEARCH LABORATORY

16

NRL PyroCb Inventory

U.S. NAVAL RESEARCH LABORATORY

First in-situ measurements from the top of an active pyroCb and young smoke outflow

NASA's DC-8 Airborne Science Laboratory

Williams Flats Fire 08 Aug. 2019

Peterson et al. 2022 (BAMS)

Significant Advancement in PyroCb Research

First opportunity to connect meteorology, fuels, fire-line geometry, and fire radiative power to pyroCb development and cloud property evolution, including chemistry of the ensuing smoke exhaust...

PyroCb Development

Cloud Property Evolution

Fire Characteristics

Summary and Conclusions

Contact: david.peterson@nrlmry.navy.mil, Twitter: @DrDavePeterson

New Class of Extreme PyroCb Events

- Pacific Northwest Event (PNE, 12 August 2017)
- ANYSO (29-31 December 2019 and 04 January 2020)
- Ensuing smoke plumes exceeded the stratospheric impact from the majority of volcanic eruptions observed during 2012-2020

Other Discoveries

U.S. NAVAI

- PyroCb smoke plumes can alter dynamic circulation
- Perturbations of stratospheric ozone
- Natural phenomenon to validate nuclear winter theory

It is now relevant to ask:

- Are the PNE and ANYSO harbingers of even larger pyroCb outbreaks?
- Potential for pyroCb super outbreaks increasing in a warming climate?
- Significant source of stratospheric aerosols each year?
- Potential impacts on radiative forcing and circulation?

Future Opportunities

- Account for pyroCb activity in aerosol transport models
- Improved tactical fire weather support

References:

- Peterson et al., 2022: Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment. *BAMS*.
- Peterson et al., 2021: Australia's Black Summer Pyrocumulonimbus Super Outbreak Reveals Potential for Increasingly Extreme Stratospheric Smoke Events. *Npj Climate & Atmos. Sci.*
- Peterson et al., 2018: Wildfire-Driven Thunderstorms Cause a Volcano-Like Stratospheric Injection of Smoke. *Npj Climate & Atmos. Sci.*

NRL PyroCb Website:

http://www.nrlmry.navy.mil/pyrocb-bin/pyrocb.cgi 20

Extra Slides

Smoke Plume Evolution and Persistence in the Stratosphere

Daily OMPS LP aerosol extinction profiles (997 nm) Stratosphere, 20S to 90S, Dec. 2019 to March 2021

- ANYSO set a new benchmark for detectable smoke plume residence time in the stratosphere:
 - At least 15 months!
 - PNE plume lasted 10 months
- The two initial stratospheric plumes merged
- Encircled a portion of the Southern Hemisphere
- Plume altitude increased from its initial injection at 15-17 km to more than 30 km within 40 days
 - Extended well into the ozone layer
 - Comparable with the sulfate plume altitude following the 1991 Pinatubo eruption
- Validation of nuclear winter theory?

Timeline of ANYSO PyroCb Activity 18 sub-events, with 38 individual pulses

PyroCb "pulse" = distinct, ice-capped convective column

Why was ANYSO a Super Outbreak?

- 38 pyroCb pulses over 51 non-consecutive hours
- 20 of the pulses (53%) reached the lower stratosphere
- Three pulses extended directly into the stratospheric "overworld", potential temperature > 380 K
- First known occurrence of continuous pyroCb activity over an entire 24 hr period (Phase #1)

Comparison with previous events

- All featured fewer than 10 pyroCb pulses
- Less than 24 hr duration
- 2017 PNE included 7 pulses, with ~4 contributing fires

Meteorology Supporting a PyroCb Super Outbreak

- Both ANYSO phases developed as a strong high pressure began to weaken
- Ahead of an approaching low pressure trough and its associated low-level frontal boundary
- Favors a deep, dry, and unstable near-surface mixed layer surmounted by a moisture source and decreased stability in the mid-troposphere
- Approaching weather disturbances sustained conditions suitable for extreme fire and pyroCb activity well after sunset (e.g., Saide et al. 2015)
- ANYSO's first phase associated with anomalous and persistent transport of moisture in mid-troposphere
- Rapidly evolving synoptic weather features are a key factor limiting the duration of pyroCb outbreaks

Drivers of Stratospheric Smoke Composition: Unknowns

Divergence in upper-troposphere

Potential Instability (dθe/dz < 0)

Mid-level moisture source

Minimal wind shear in lower-troposphere Intense fire Plume-dominated

Extreme surface fire danger: dry, hot, windy

Photochemical reactions that influence ozone chemistry?

What are the rules for secondary aerosol when precursors are way up here?

Aerosol/gas phase chemistry of smoke plumes in the UTLS?

How much liquid processing of particles?

Characteristics of the contributing fire?

Peterson et al., 2017 (Mon. Wea. Rev)